CMOS VLSI Frequency Translation for Multi-Standard Wireless Communication Transceivers

> Jacques C. Rudell University of California, Berkeley

> > Qualifying Examination April 8th, 1996

High Demand for Portable Transceivers Projected World-Wide Cellular Phone Sales (units in millions) (Source:Dataquest) 99.8 80.1 59.8 47.6 36.2 30 1996 1995 1997 1994 1998 1999 Variety of RF standards Cellular, Cordless, and PCS transceiver units all require: Low Cost Low Power Small Form Factor Portability Versatility

Existing Hardware Solutions are Inefficient

- Current transceiver requires many discrete components
- Multi-components are highly power & cost inefficient
- Multi-standard capability prohibitively large

Multi-Standard CMOS Solution

Research Proposal

System Contribution

- Examine solutions to full integration of frequency translation system
- Frequency translation w/ multi-standard capability

Circuit Contribution

• Determine the fundamental limits of CMOS mixers in a multi-standard environment

Receiver Issues

- IR SAW filter: image rejection & noise reduction in LO₁ mixer
- Bandpass IF filter reduces distortion

Existing Approaches to Integration

Homodyne

<u>Advantage</u>

• Zero IF, no image band present

Disadvantage

• LO leakage problem

Heterodyne w/ Image-Rejection

<u>Advantage</u>

• Need for IR filter eliminated

<u>Disadvantage</u>

 90° phase shifter requires passive component tuning & matching

Multi-Standard Receiver Architecture

Wideband-Heterodyne w/ Double Conversion

- New approach utilizes six analog continuous time active mixers
- Mixer performs image-rejection and modulation to baseband
- LO2 channel selection affects image-rejection mixer specifications

Off-chip filters replaced by active rejection

Image Cancellation Scheme

New Architecture is Multi-Standard Capable

- Image attenuation is independent of passive components; exploits the odd and even properties of sine and cosine
- Pass & stop band determined by $\omega_{LO1} \underset{\&}{\otimes} \omega_{LO2}$ only
- Sharp transition between pass & stop band
- Image-rejection mixer is programmable

Image Rejection is self-aligning

Mixer Architectural Non-Idealities

Image Attentuation vs. LO phase error

Image Attentuation vs. Gain Mismatch (%)

- Matching is a critical issue
 - 30dB of IR requires I/Q phase matching better than 4^o
 - 5% gain error for 30dB of image-rejection

Mixer Topologies

Passive Mixers

Resistive/Switching Demodulator Sampling Demodulator

- No static power consumption
- Excellent linearity
- Low gain conversion loss
- Poor noise performance

- Static power consumption
- Fair linearity
- Fair gain
- Clear design trade-offs

Gilbert Cell Performs Current Modulation

(Barrie Gilbert, JSSC Dec. 1968)

- Input differential pair acts as gain stage
- Bipolar / CMOS devices driven w/ LO act as switches

Conversion Gain of a CMOS Gilbert Cell

Performance Limits for Different Standards

Assumptions

- Gain of the LNA 20 or 0(dB)
- LO1 Mixer CG is 1
- LO2 Mixer CG is 3

Standard	IP3	DR	NF _{total}	NF(@LNA)	Power
IS-54	25dBm	100dB	5dB	Not Po	ssible
GSM	-5dBm	100dB	8dB	2.2dB	55mW
DECT	0dBm	74dB	15dB	14dB	4.7mW
802.11	+3dBm	80dB	8dB	2.2dB	55mW

New Gilbert Cell with Variable Gain

Design for the DECT Standard

LO1 Mixers Design Issues

- LO1 & IF trade-off
- Gain BW product difficult to achieve
- AC coupling required

LO2 Mixers Design Issues

- High gain required
- DC offset due to LO leakage
- PMOS flicker noise
- Offset compensation
 current DAC

	Simulated	Measured
IR	N/A	26dB
IP3	+6dBm	
CG	10dB	8dB
NF	2.0dB	
Power	55mW	55mW

Comparison to Other Work

Image-Rejection Mixers

Author, Publication	RF / IF (GHz)	IR(dB)	NF(dB)	IP3(dBm)	CG(dB)
M. MacDonald, ISSCC '93	1.9 / 0.110	14.1	18	-12	7
Steyart, JSSC Dec. '95	0.9 / ??	30	24	+28	9
D.Pache, et al., CICC '95	2 / 0.2	35	??	-5	10
J. Rudell & P. Gray,	1.9 / 0.22	26			

CMOS Gilbert Cells

Author	L(µm)	IP3(dBm)	NF(dB)	CG(dB)	RF(GHz)
D.K. Lovelace, '93	1.5	0	8 SSB	10.5	0.86
A. Abidi, JSSC '96	1.0	28	4.5 DSB	0	0.9
J. Rudell & P. Gray,	0.6				1.8

CMOS Gilbert cell

Current Project Status

- Project Status & Results
 - Simulated results
 - IP3 of the entire IR mixer is +6dBm
 - Entire IR mixer dissipates 55mW
 - 10dB of conversion gain
 - Measured results
 - Prototype image-reject mixer was found fully functional w/ 26dB of image-rejection
- Future Work.
 - Develop better models for noise and distortion of CMOS Gilbert cell
 - Compare analytical models to measured results of individual CMOS mixer testchip