

HFA3926

ADVANCE INFORMATION

February 1997

Features

- Highly Integrated Power Amplifier with T/R Switch
- · Operates Over 2.7V to 6V Supply Voltage
- High Linear Output Power (P_{1dB}: +24.5dBm)
- Low Cost SSOP-28 Plastic Package

Applications

- Wireless Local Loop Systems
- Systems Targeting IEEE 802.11 Standard
- **TDD Quadrature-Modulated Communication Systems**
- Wireless Local Area Networks
- **PCMCIA Wireless Transceivers**
- ISM Systems

Description

The Harris HFA3926 is an integrated power amplifier with transmit/receive switch in a low cost SSOP 28 plastic

250mW Power Amplifier

2.0GHz - 2.7GHz

package. The power amplifier delivers +27dB of gain with high efficiency and can be operated with voltages as low as 2.7V. The power amplifier switch is fully monolithic and can be controlled with CMOS logic levels.

The HFA3926 is ideally suited for QPSK, BPSK or other linearly modulated systems in the 2.4GHz Industrial, Scientific, and Medical (ISM) frequency band. It can also be used in GFSK systems where levels of +25dBm are required. Typical applications include Wireless Local Area Network (WLAN) and Wireless Local Loop systems.

Ordering Information

Functional Block Diagram

V_{GX}(-)

STAGE BIAS CONTROL

STAGE 1 STAGE 2 STAGE 3

V_{DDX}(+) •

15 RF IN

PART NUMBER	TEMP. RANGE (^o C)	PACKAGE	PKG. NO.
HFA3926IA	-40 to 85	28 Ld SSOP	M28.15
HFA3926IA96	-40 to 85	Tape and Reel	

T/R CNTRL

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright C Harris Corporation 1997

RX OUT

ANT

Pin Description

PINS	SYMBOL	DESCRIPTION
1	GND	DC and RF Ground.
2	GND	DC and RF Ground.
3	GND	DC and RF Ground.
4	GND	DC and RF Ground.
5	GND	DC and RF Ground.
6	GND	DC and RF Ground.
7	GND	DC and RF Ground.
8	RX OUT	Output of T/R Switch for receive mode.
9	V _{G2}	Negative bias control for the second PA stage, adjusted to set V _{DD2} quiescent bias current, which is typically 70mA. Typical voltage at pin = -0.55V. Input impedance: > 1M Ω .
10	GND	DC and RF Ground.
11	V _{DD1}	Positive bias for the first stage of the PA, 2.7V to 6V.
12	GND	DC and RF Ground.
13	GND	DC and RF Ground.
14	V _{G1}	Negative bias control for the first PA stage, adjusted to set V _{DD1} quiescent bias current, which is typically 20mA. Typical voltage at pin = -0.75V. Input impedance: > $1M\Omega$.
15	RF IN	RF Input of the Power Amplifier.
16	GND	DC and RF Ground.
17	V _{G3}	Negative bias control for the third PA stage, adjusted to set V _{DD3} quiescent bias current, which is typically 90mA. Typical voltage at pin = -0.95V. Input impedance: > $1M\Omega$.
18	V _{DD2}	Positive bias for the second stage of the PA. 2.7V to 6V.
19-22	GND	DC and RF Ground.
23	V _{DD3}	Positive bias for the third stage of the PA. 2.7V to 6V.
24	GND	DC and RF Ground.
25	RF OUT	RF output of T/R switch and power amplifier for transmit mode.
26	T/R CTRL	0V for transmit mode, +5V for receive mode.
27	V _{DD} TR	V _{DD} for T/R switch.
28	GND	DC and RF Ground.

Thermal Information

Thermal Resistance (Typical, Note 3)

SSOP Package

Maximum Storage Temperature Range-65°C to 150°C

 θ_{JA} (°C/W)

88

Absolute Maximum Ratings

Operating Conditions

Temperature Range-40°C to 85°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Ambient temperature $(T_A) = 25^{\circ}C$.

2. $|V_{DD}| + |V_{GG}|$ not to exceed 12V.

3. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications	$T_A = 25^{\circ}C$, $Z_0 = 50\Omega$, $V_{DD} = +5V$, $P_{IN} = -30dBm$, f = 2.45GHz, Unless Otherwise Specified
---------------------------	---

PARAMETER	MIN	ТҮР	MAX	UNITS		
POWER AMPLIFIER INPUT FREQUENCY RANGE						
Linear Gain 2.0GHz - 2.5GHz	27	28	32	dB		
2.5GHz - 2.7GHz	23.5	27	-	dB		
VSWR In/Out	-	1.75:1	-			
Input Return Loss	-	-11.3	-	dB		
Output Return Loss	-	-11.3	-	dB		
Output Power at P _{1dB} 2.0GHz - 2.7GHz	23	24.5	-	dBm		
Second Harmonic at P _{1dB}	-	-20	0	dBc		
Third Harmonic at P _{1dB}	-	-30	-10	dBc		
I _{DD} at P1dB (V _{DD1} + V _{DD2} + V _{DD3})	-	270	375	mA		

Typical Performance Curves

Power Amplifier Small Signal Performance NOTE: All data measured at $T_A = 25^{\circ}C$ and V_{G1} , V_{G2} and V_{G3} adjusted for first stage quiescent current of 20mA, second stage current of 50mA and third stage current of 90mA, respectively.

TBD

TBD

FIGURE 1. LINEAR GAIN

FIGURE 2. INPUT MATCH

Typical Application Example

EXTERNAL CIRCUITRY PARTS LIST

LABEL	VALUE	PURPOSE
C ₁ - C ₆	22pF	Bypass (GHz)
C ₂₃ - C ₂₄	22pF	DC Block
C ₇ - C ₁₆	1000pF	Bypass (MHz)
C ₁₇ - C ₂₂	0.01µF	Bypass (kHz)
R ₁ , R ₆	1.5kΩ	FET Gate Divider Network
R ₃ , R ₅	5kΩ	
R ₂	12kΩ	
R ₄	1kΩ	

NOTE: All off-chip components are low cost surface mount components obtainable from multiple sources. (0.020in x 0.040in or 0.030in x 0.050in.)

Shrink Small Outline Plastic Packages (SSOP)

NOTES:

- 1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- 9. Dimension "B" does not include dambar protrusion. Allowable dambar protrusion shall be 0.10mm (0.004 inch) total in excess of "B" dimension at maximum material condition.
- 10. Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact.

All Harris Semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.

Sales Office Headquarters

For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS

NORTH AMERICA

Harris Semiconductor P. O. Box 883, Mail Stop 53-210 Melbourne, FL 32902 TEL: 1-800-442-7747 (407) 729-4984 FAX: (407) 729-5321

EUROPE

Harris Semiconductor Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

M28.15

28 LEAD SHRINK NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

	INC	HES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	0.053	0.069	1.35	1.75	-
A1	0.004	0.010	0.10	0.25	-
A2	-	0.061	-	1.54	-
В	0.008	0.012	0.20	0.30	9
С	0.007	0.010	0.18	0.25	-
D	0.386	0.394	9.81	10.00	3
E	0.150	0.157	3.81	3.98	4
е	0.025 BSC		0.635 BSC		-
Н	0.228	0.244	5.80	6.19	-
h	0.0099	0.0196	0.26	0.49	5
L	0.016	0.050	0.41	1.27	6
N	28		28		7
α	0 ⁰	8 ⁰	0 ⁰	8 ⁰	-

Rev. 0 2/95

ASIA Harris Semiconductor PTE Ltd. No. 1 Tannery Road Cencon 1, #09-01 Singapore 1334 TEL: (65) 748-4200 FAX: (65) 748-0400