$2.0 \mathrm{GHz}-2.7 \mathrm{GHz}$ 250mW Power Amplifier

Features

- Highly Integrated Power Amplifier with T/R Switch
- Operates Over 2.7V to 6V Supply Voltage
- High Linear Output Power ($\mathrm{P}_{\mathbf{1 d B}}$: +24.5dBm)
- Low Cost SSOP-28 Plastic Package

Applications

- Wireless Local Loop Systems
- Systems Targeting IEEE 802.11 Standard
- TDD Quadrature-Modulated Communication Systems
- Wireless Local Area Networks
- PCMCIA Wireless Transceivers
- ISM Systems

Description

The Harris HFA3926 is an integrated power amplifier with transmit/receive switch in a low cost SSOP 28 plastic package. The power amplifier delivers +27 dB of gain with high efficiency and can be operated with voltages as low as 2.7V. The power amplifier switch is fully monolithic and can be controlled with CMOS logic levels.

The HFA3926 is ideally suited for QPSK, BPSK or other linearly modulated systems in the 2.4 GHz Industrial, Scientific, and Medical (ISM) frequency band. It can also be used in GFSK systems where levels of +25 dBm are required. Typical applications include Wireless Local Area Network (WLAN) and Wireless Local Loop systems.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HFA3926IA	-40 to 85	28 Ld SSOP	M28.15
HFA3926IA96	-40 to 85	Tape and Reel	

Pinout
HFA3926
(SSOP)
TOP VIEW

Functional Block Diagram

Pin Description

PINS	SYMBOL	DESCRIPTION
1	GND	DC and RF Ground.
2	GND	DC and RF Ground.
3	GND	DC and RF Ground.
4	GND	DC and RF Ground.
5	GND	DC and RF Ground.
6	GND	DC and RF Ground.
7	GND	DC and RF Ground.
8	RX OUT	Output of T/R Switch for receive mode.
9	$\mathrm{V}_{\mathrm{G} 2}$	Negative bias control for the second PA stage, adjusted to set $\mathrm{V}_{\mathrm{DD} 2}$ quiescent bias current, which is typically 70 mA . Typical voltage at pin $=-0.55 \mathrm{~V}$. Input impedance: $>1 \mathrm{M} \Omega$.
10	GND	DC and RF Ground.
11	$\mathrm{V}_{\mathrm{DD} 1}$	Positive bias for the first stage of the PA, 2.7V to 6 V .
12	GND	DC and RF Ground.
13	GND	DC and RF Ground.
14	$\mathrm{V}_{\mathrm{G} 1}$	Negative bias control for the first PA stage, adjusted to set $\mathrm{V}_{\text {DD1 }}$ quiescent bias current, which is typically 20 mA . Typical voltage at pin $=-0.75 \mathrm{~V}$. Input impedance: $>1 \mathrm{M} \Omega$.
15	RF IN	RF Input of the Power Amplifier.
16	GND	DC and RF Ground.
17	$\mathrm{V}_{\mathrm{G} 3}$	Negative bias control for the third PA stage, adjusted to set $\mathrm{V}_{\text {DD3 }}$ quiescent bias current, which is typically 90 mA . Typical voltage at pin $=-0.95 \mathrm{~V}$. Input impedance: $>1 \mathrm{M} \Omega$.
18	$\mathrm{V}_{\mathrm{DD} 2}$	Positive bias for the second stage of the PA. 2.7 V to 6 V .
19-22	GND	DC and RF Ground.
23	$\mathrm{V}_{\text {DD3 }}$	Positive bias for the third stage of the PA. 2.7 V to 6 V .
24	GND	DC and RF Ground.
25	RF OUT	RF output of T/R switch and power amplifier for transmit mode.
26	T/R CTRL	OV for transmit mode, +5 V for receive mode.
27	V_{DD} TR	V_{DD} for T / R switch.
28	GND	DC and RF Ground.

Absolute Maximum Ratings	Thermal Information
Maximum Input Power (Note 1) . +23 dBm	Thermal Resistance (Typical, Note 3) $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
Operating Voltages (Notes 1, 2) $\ldots \ldots V_{D D}=8 V, V_{G G}=-8 V$	
Operating Conditions	
Temperature Range . $44^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.	
NOTES:	
1. Ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)=25^{\circ} \mathrm{C}$.	
2. $\left\|\mathrm{V}_{\mathrm{DD}}\right\|+\left\|\mathrm{V}_{\mathrm{GG}}\right\|$ not to exceed 12 V .	
3. θ_{JA} is measured with the component mounted on an evaluation P	board in free air.

Electrical Specifications $T_{A}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega, \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=-30 \mathrm{dBm}, \mathrm{f}=2.45 \mathrm{GHz}$, Unless Otherwise Specified

PARAMETER	MIN	TYP	MAX	UNITS
POWER AMPLIFIER INPUT FREQUENCY RANGE				
Linear Gain $2.0 \mathrm{GHz}-2.5 \mathrm{GHz}$	27	28	32	dB
$2.5 \mathrm{GHz}-2.7 \mathrm{GHz}$	23.5	27	-	dB
VSWR In/Out	-	$1.75: 1$	-	
Input Return Loss	-	-11.3	-	dB
Output Return Loss	-	-11.3	-	dB
Output Power at $\mathrm{P}_{1 \mathrm{~dB}}$ 2.0GHz - 2.7GHz	23	24.5	-	dBm
Second Harmonic at $\mathrm{P}_{1 \mathrm{~dB}}$	-	-20	0	dBc
Third Harmonic at $\mathrm{P}_{1 \mathrm{~dB}}$	-	-30	-10	dBc
IDD at P1dB $\left(\mathrm{V}_{\mathrm{DD} 1}+\mathrm{V}_{\mathrm{DD} 2}+\mathrm{V}_{\mathrm{DD} 3}\right)$	-	270	375	mA

Typical Performance Curves

Power Amplifier Small Signal Performance NOTE: All data measured at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}$ and $\mathrm{V}_{\mathrm{G} 3}$ adjusted for first stage quiescent current of 20 mA , second stage current of 50 mA and third stage current of 90 mA , respectively.

Typical Performance Curves (Continued)

TBD

FIGURE 3. OUTPUT MATCH

Power Amplifier CW Performance at Various Supply Voltages NOTE: All data measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}$ and $\mathrm{V}_{\mathrm{G} 3}$ adjusted for first stage quiescent current of 20 mA , second stage current of 50 mA and third stage current of 90 mA , respectively.

TBD

FIGURE 4. POWER OUTPUT

TBD

TBD

FIGURE 6. GAIN COMPRESSION

Typical Performance Curves (Continued)

Power Amplifier Temperature Performance NOTE: All data measured at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}$ and $\mathrm{V}_{\mathrm{G} 3}$ adjusted for first stage quiescent current of 20 mA , second stage current of 50 mA and third stage current of 90 mA , respectively.

TBD

FIGURE 7. LINEAR GAIN
FIGURE 8. POWER OUTPUT

TBD

FIGURE 9. GAIN COMPRESSION

Power Amplifier Spurious Response at Various Supply Voltages NOTE: All data measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}$ and $\mathrm{V}_{\mathrm{G} 3}$ adjusted for first stage quiescent current of 20 mA , second stage current of 50 mA and third stage current of 90 mA , respectively.

Typical Performance Curves (Continued)

TBD

FIGURE 12. THIRD HARMONIC RATIO

Transmit/Receive Switch Performance NOTE: All data measured with $\mathrm{V}_{\mathrm{DD}} \mathrm{TR}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TBD

FIGURE 13. RECEIVE MODE T/R INSERTION LOSS/ISOLATION

TBD

FIGURE 14. RECEIVE MODE T/R SWITCH MATCH

Typical Application Example

EXTERNAL CIRCUITRY PARTS LIST

LABEL	VALUE	PURPOSE
$\mathrm{C}_{1}-\mathrm{C}_{6}$	22 pF	Bypass (GHz)
$\mathrm{C}_{23}-\mathrm{C}_{24}$	22 pF	DC Block
$\mathrm{C}_{7}-\mathrm{C}_{16}$	1000 pF	Bypass (MHz)
$\mathrm{C}_{17}-\mathrm{C}_{22}$	$0.01 \mu \mathrm{~F}$	Bypass (kHz)
$\mathrm{R}_{1}, \mathrm{R}_{6}$	$1.5 \mathrm{k} \Omega$	FET Gate Divider Network
$\mathrm{R}_{3}, \mathrm{R}_{5}$	$5 \mathrm{k} \Omega$	
R_{2}	$12 \mathrm{k} \Omega$	
R_{4}	$1 \mathrm{k} \Omega$	

NOTE: All off-chip components are low cost surface mount components obtainable from multiple sources. (0.020in $\times 0.040$ in or 0.030 in $\times 0.050 \mathrm{in}$.)

Shrink Small Outline Plastic Packages (SSOP)

M28.15
28 LEAD SHRINK NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A1	0.053	0.069	1.35	1.75	-
A2	0.004	0.010	0.10	0.25	-
B	0.008	0.012	0.20	0.30	9
C	0.007	0.010	0.18	0.25	-
D	0.386	0.394	9.81	10.00	3
E	0.150	0.157	3.81	3.98	4
e	0.025		BSC	0.635	BSC
H	0.228	0.244	5.80	6.19	-
h	0.0099	0.0196	0.26	0.49	5
L	0.016	0.050	0.41	1.27	6
N	28		28		-
α	0^{0}	8^{0}	0^{0}	8^{0}	-

Rev. 0 2/95

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " D " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension " E " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension "B" does not include dambar protrusion. Allowable dambar protrusion shall be 0.10 mm (0.004 inch) total in excess of "B" dimension at maximum material condition.
10. Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact.

All Harris Semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.

Sales Office Headquarters

For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS

NORTH AMERICA

Harris Semiconductor
P. O. Box 883, Mail Stop 53-210

Melbourne, FL 32902
TEL: 1-800-442-7747
(407) 729-4984

FAX: (407) 729-5321

EUROPE

Harris Semiconductor
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA

Harris Semiconductor PTE Ltd.
No. 1 Tannery Road
Cencon 1, \#09-01
Singapore 1334
TEL: (65) 748-4200
FAX: (65) 748-0400

HARRIS
SEMICONDUCTOR

