CS 294-7: Digital Modulation

Prof. Randy H. Katz CS Division University of California, Berkeley Berkeley, CA 94720-1776 © 1996

Analog Modulation: AM Radio

Amplitude Modulation (AM)

Analog Modulation: FM Radio

Frequency Modulation (FM)

Noise has a greater effect on amplitude than frequency

Sufficient to detect zero crossings to reconstruct the signal

Easy to eliminate amplitude distortion

Carrier Amplitude

Constant envelope, i.e., envelope of carrier wave does not change with changes in modulated signal

This means that more efficient amplifiers can be used, reducing power demands

Detection of FM Signal

Received Noise translates into Signal amplitude changes, and sometimes frequency Limiter changes **Detection based on** Differentiator zero crossings: the limiter Rectifier Alternative schemes to translate limited signal into bit streams Pulse Generator Slicer Low Pass Thresholds Filter Slicer

4

• Carrier wave s:

- $s(t) = A(t) * cos[\Theta(t)]$
- Function of time varying amplitude A and time varying angle Θ
- Angle Θ rewritten as:
 - $\Theta(t) = \omega_0 + \varphi(t)$
 - ω_0 radian frequency, phase $\phi(t)$
- $s(t) = A(t) \cos[\omega_0 t + \phi(t)]$
 - $-\omega$ radians per second
 - relationship between radians per second and hertz

$$\gg \omega = 2 \pi f$$

- Demodulation
 - Process of removing the carrier signal
- Detection
 - Process of symbol decision
 - Coherent detection
 - » Receiver users the carrier phase to detect signal
 - » Cross correlate with replica signals at receiver
 - » Match within threshold to make decision
 - Noncoherent detection
 - » Does not exploit phase reference information
 - » Less complex receiver, but worse performance

Coherent	Noncoherent
Phase shift keying (PSK)	FSK
Frequency shift keying (FSK)	ASK
Amplitude shift keying (ASK)	Differential PSK (DPSK)
Continuous phase modulation (CPM)	CPM
Hybrids	Hybrids

Coherent (aka synchronous) detection: process received signal with a local carrier of same frequency and phase

Noncoherent (aka envelope) detection: requires no reference wave

Metrics for Digital Modulation

- Power Efficiency
 - Ability of a modulation technique to preserve the fidelity of the digital message at low power levels
 - Designer can increase noise immunity by increasing signal power
 - Power efficiency is a measure of how much signal power should be increased to achieve a particular BER for a given modulation scheme
 - Signal energy per bit / noise power spectral density: E_b / N₀
- Bandwidth Efficiency
 - Ability to accomodate data within a limited bandwidth
 - Tradeoff between data rate and pulse width
 - Thruput data rate per hertz: R/B bps per Hz
- Shannon Limit: Channel capacity / bandwidth

 $- C/B = log_2(1 + S/N)$

- Modify carrier's amplitude and/or phase (and frequency)
- Constellation: Vector notation/polar coordinates

Considerations in Choice of Modulation Scheme

- High spectral efficiency
- High power efficiency
- Robust to multipath effects
- Low cost and ease of implementation
- Low carrier-to-cochannel interference ratio
- Low out-of-band radiation
- Constant or near constant envelope
 - Constant: only phase is modulated
 - Non-constant: phase and amplitude modulated

Binary Modulation Schemes

• Amplitude Shift Keying (ASK)

- Transmission on/off to represent 1/0
- Note use of term "keying," like a telegraph key

• Frequency Shift Keying (FSK)

1/0 represented by two different frequencies slightly offset from carrier frequency

Phase Shift Keying

• Binary Phase Shift Keying (BPSK)

- Use alternative sine wave phase to encode bits
- Simple to implement, inefficient use of bandwidth
- Very robust, used extensively in satellite communications

Phase Shift Keying

- Quadrature Phase Shift Keying (QPSK)
 - Multilevel modulation technique: 2 bits per symbol
 - More spectrally efficient, more complex receiver

Output waveform is sum of modulated ± Cosine and ±Sine wave

2x bandwidth efficiency of BPSK

Quadrature Phase Shift Keying

14

Minimum Shift Keying

- Special form of (continuous phase) frequency shift keying
 - Minimum spacing that allows two frequencies states to be orthogonal
 - Spectrally efficient, easily generated

Phase continuity at the bit transitions

Generating Minimum Shift Keying

Gaussian Minimum Shift Keying (GMSK)

- MSK + premodulation Gaussian low pass filter
- Increases spectral efficiency with sharper cutoff, excellent power efficiency due to constant envelope

- Used extensively in second generation digital cellular and cordless telephone applications
 - GSM digital cellular: 1.35 bps/Hz
 - DECT cordless telephone: 0.67 bps/Hz
 - RAM Mobile Data

/4-Shifted QPSK

Variation on QPSK

- Restricted carrier phase transition to +/- /4 and +/- 3 /4
- Signaling elements selected in turn from two QPSK constellations, each shifted by /4
- Maximum phase change is ±135° vs. 180° for QPSK, thus maintaining constant envelope (i.e., amplitude of QPSK signal not constant for short interval during 180° phase changes)

Popular in Second Generation Systems

- North American Digital Cellular (IS-54): 1.62 bps/Hz
- Japanese Digital Cellular System: 1.68 bps/Hz
- European TETRA System: 1.44 bps/Hz
- Japanese Personal Handy Phone (PHP)

/4-Shifted QPSK

• Advantages:

- Two bits per symbol, twice as efficient as GMSK
- Phase transitions avoid center of diagram, remove some design constraints on amplifier
- Always a phase change between symbols, leading to self clocking

Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation (QAM)
 - Amplitude modulation on both quadrature carriers
 - 2ⁿ discrete levels, n = 2 same as QPSK
- Extensive use in digital microwave radio links

