
1

A Wireless LAN Demodulator in a Pamette: Design and Experience

Tom McDermott*, Philip Ryan†, Mark Shand‡, David Skellern*, Terry Percival† and Neil Weste*

* Macquarie University Electronics Department, Sydney NSW 2109 Australia
Tel: +61 2 98 50 91 45 Fax: +61 2 98 50 91 28 spon@mpce.mq.edu.au

† CSIRO Division of Telecommunications and Industrial Physics, PO Box 76, Epping NSW 2121 Australia
Tel: +61 2 93 72 42 22 Fax: +61 2 93 72 44 94 pryan@rp.csiro.au

‡ Digital Equipment Corporation, Systems Research Center, 130 Lytton Av., Palo Alto CA 94302-1044 USA
shand@acm.org

1. Abstract
We have implemented the digital section of a wireless
local area network (WLAN) demodulator in a
reconfigurable interface card called the PCI Pamette.
The entire baseband section of the demodulator has been
implemented in the Pamette and a simple analog to
digital mezzanine board. This is the second
implementation of the demodulator, the first being a
card-based design using a mixture of discrete and
reconfigurable logic. The Pamette implementation took
far less time to complete than the card-based design.
Moreover, the reconfigurable substrate is much more
versatile. This paper describes the Pamette
implementation and discusses our experiences with the
two different design styles and technologies.

2. Introduction
The Macquarie University Electronics Department and
the CSIRO Division of Telecommunications and
Industrial Physics are developing a high-speed WLAN
[3]. The target of this project is a complete modem in a
single chip by 1998. The current stage of the project calls
for a versatile hardware prototype which can operate at
30 MHz. This prototype will be used to explore
architectural and algorithmic issues, and to characterize
the 5 GHz indoor radio environment.

Software simulations based on radio channel
measurements at 40 GHz led to the development of a
prototype WLAN demodulator architecture. The purpose
of the Pamette demodulator implementation is to validate
and refine parameter choices for 5 GHz operation. A
hardware prototype running in real time is vital to this
requirement because software models do not run fast
enough to take useful amounts of data. For example, to
measure bit error rates of 10-9 requires more than 1010

transmitted bits. On a lightly loaded HP 9000/735
(125 MHz clock speed) it takes longer than 1 hour to

simulate demodulation of 106 bits – or more than a year
to simulate 1010 bits. In the Pamette implementation
running

at 30 MHz, 1010 bits can be processed in under 10
minutes.

The structure of this paper is as follows. We first describe
the WLAN concept and architecture. We next describe
the Pamette hardware and associated CAD, cover the
Pamette implementation of the demodulator, and close
with a comparison of the Pamette and card-based
implementations.

2.1 The WLAN System
The basic entity of the WLAN is a radio cell, consisting
of a hub station and mobile stations [5]. The hub station
is responsible for providing connectivity between mobile
stations in the cell, and from mobile stations to the wired
backbone. The WLAN, shown in Figure 1, consists of one
or more radio cells, along with wired terminals,
connected to the wider network over a wired backbone.
Communication between the hub and mobile stations is
via a radio link, using a coded multi-tone modulation

Figure 1: Wireless Local Area Network System

2

scheme to overcome multi-path interference.

At the transmitter, raw data is encoded by a rate-½
convolutional encoder, and then interleaved. The
interleaving process is performed to decorrelate errors in
the radio channel, making the channel appear Gaussian.
The interleaved data is then packed into frames of block-
differentially-modulated quadrature phase-shift-keyed
(DQPSK) symbols suitable for generating a multi-tone
signal. These frames are passed to a 16-point Inverse Fast
Fourier Transform (IFFT) processor, where the DQPSK
symbols in the frame set the phase of 16 individual tones.
The output of the IFFT is a complex time domain signal
consisting of the sum of these 16 tones – a multi-tone
signal. This signal is passed to a radio-frequency (RF)
transmitter, where it is mixed up to RF frequencies (5
GHz in our system) and transmitted.

At the receiver the RF radio signal is down-converted to a
pair of signal components (in-phase and quadrature-
phase) at baseband (30 MHz). These recovered signal
components are used by the demodulator to reconstruct
the transmitted data sequence.

2.1.1 Demodulator Architecture
The digital section of the demodulator is shown in Figure
2. The in-phase (I) and quadrature-phase (Q)
components of the received signal are sampled at the
baseband frequency by a pair of analog-to-digital
converters, yielding two data streams.

The data passes into a Fast Fourier Transform (FFT)
processor which computes the I and Q frequency

components of the received signal. These frequency
components are estimates of the transmitted DQPSK
symbols. A rectangular to polar conversion transforms
the I and Q signals into phase and magnitude form. A
block phase difference is then performed, and the symbols
deinterleaved to produce a stream of QPSK symbol
estimates, from which a Viterbi decoder recovers the final
bit stream.

2.1.2 Computational Complexity
The demodulator has a computational complexity of
about 200 DSP operations per sample, or 109

DSP operations per second for 30MHz operation. A DSP
operation is here taken to be an 8-bit addition, multiply-
accumulate or load-store. Because much of the
arithmetic in the demodulator requires only 8-bit words,
it is not apparent that significant advantage could be
gained by using a DSP chip with much wider word-
widths. Even assuming a DSP clock that is five times the
sample speed (i.e. 150 MHz), a DSP-based
implementation would require some 40 DSP chips, with
corresponding difficulties resulting from the partitioning
of the design across a large number of devices.

3. The PCI Pamette
The PCI Pamette is a reconfigurable interface card
developed by Digital Equipment Corporation [1]. The
Pamette consists of a user area of 4 Xilinx FPGAs [9], a
PCI interface (implemented in a fifth FPGA), 256 kB of
scratchpad SRAM, and slots for up to 256 MB of DRAM
SIMMs. The Pamette provides mezzanine card support
through standard IEEE CMC connectors [8]. This allows

Phase
Difference

Rectangular
to

Polar

16-point
FFT

Viterbi
Decode

Deinterleave Data OutI In

Q In

Figure 2: Demodulator Architecture

Figure 3: PCI Pamette

3

external I/O through either a standard or a custom
mezzanine card.

Also provided with the Pamette is a set of CAD tools
called PamDC for implementing designs [2]. PamDC is
derived from Perle1DC, the CAD system of DECPeRLe-1
[1]. PamDC is a C++ class library which allows netlist
descriptions to be embedded in user-written C++ code.
For example, the code fragment shown in Figure 4
implements an 8-bit adder. The Pamette CAD provides
support for attaching placement directives to nets at the
C++ level. C++ classes are used to represent the
hierarchy of a design, equivalent to blocks and sub-blocks
in a schematic.

The Pamette design flow consists of writing a C++
program which, when compiled and run, produces a
netlist. This netlist is then passed to the Xilinx backend
tools to produce a Xilinx bitstream. Use of the CAD tools
is not mandatory; any technique which generates a Xilinx
bitstream can be used to configure the Pamette FPGAs.

The version of the Pamette used in the demodulator is
populated with four user-programmable XC4010Es,
giving the user access to about 40k gates. Another variant
of the Pamette replaces these chips with the XC4020E,
yielding up to 80k gates.

We will call a particular configuration imposed on the
reconfigurable hardware on the board, and a
corresponding program executing on the host, a Pamette
design. The host can transfer data to and from the
Pamette over the PCI bus, reprogram the Pamette, and (in
a debug mode) single-step the Pamette’s clock. Part of
the CAD set is a library of functions for programming
and accessing the Pamette from the host.

4. Pamette Demodulator
The Pamette implementation of the demodulator was
largely a straightforward translation of the existing card-
based design [5]. Our first step was to calculate the size
of the blocks to ensure that the demodulator could be
implemented in the Pamette, and could be partitioned
across the four user-area FPGAs. Each block in Figure 2
was then implemented by transcribing from existing
schematics to the Pamette CAD. The digital section of
the design runs at 30 MHz. The FFT and Viterbi decoder
blocks are fully placed – the location of every CLB is
specified in the C++ description of the design. This was
necessary to reach the target design speed and ensure that
the blocks would fit into their allocated FPGAs. The
phase difference and deinterleaver blocks are only
partially placed – some obvious placement constraints
have been applied, but much of the control logic was left
to the Xilinx backend tools because they gave sufficient
performance.

The FFT block is implemented in a single XC4010E,
with the design based heavily on an earlier semi-custom
implementation [4]. The 16-point FFT is decomposed
into two 4-point FFTs separated by a complex multiplier.
The 4-point FFTs are further decomposed into two
(trivial) 2-point FFTs and two degenerate multipliers.
The resulting 16-point FFT requires only a single
complex multiplier embedded in a pipeline of simple 2-
point FFT processors and degenerate multipliers. The
FFT is symbol-serial/bit-parallel – the 16 symbols are
processed sequentially, but each symbol is dealt with in a
bit-parallel fashion.

The implementation of the rectangular-to-polar
conversion demonstrates one of the powerful abilities of
the Pamette hardware and CAD. The conversion is done
using one of the Pamette SRAM banks as a lookup table.
At startup time, the Pamette is configured into a simple
design that can be used to read and write the SRAM.
This is then used to load the table lookup values. The
Pamette is then reconfigured to the demodulator design.
By using a separate design to do the once-off
initialization the demodulator design is simplified, and
the design effort is decreased because we can reuse an
existing SRAM read-write design.

Another powerful feature of the Pamette is apparent in
the deinterleaver block. The deinterleaving is done by
writing data to an n by m memory array row by row, then
reading it out column by column. To generate different
deinterleaver sizes, we simply pass the two parameters n
and m to the C++ description of the design. This allows
us to select the deinterleaver size simply by generating a

WireVector<Bool, 8> A,B,Carry,Sum;

/* Bottom bit has no carry in */
Sum[0] = A[0] ^ B[0];
Carry[0] = A[0] & B[0];

for(int i = 1; i < 8; i++)
{ /* Specify the top 7 bits */
 Sum[i] = A[i] ^ B[i] ^ Carry[i-1];
 Carry[i] = (A[i] & B[i]) |
 (A[i] & Carry[i-1]) |
 (B[i] & Carry[i-1]);
}

Figure 4: An 8-bit Adder in the Pamette C++
Hardware Description Language

4

number of different Pamette configurations and
downloading the appropriate one. The implementation of
any particular interleaver - say the 3-by-7 case - is quite
simple. The complexity is moved from the logic design
to the CAD, where complexity is easily handled because
we have all the power of a full-blown programming
language.

4.1 Analog interface
Input to the demodulator is two analog signals – the I and
Q components of the recovered radio signal, and two
digital signals – an external clock and a start-of-packet
flag. In order to bring these to the Pamette digital section
an analog interface was implemented on a simple plug-in
mezzanine card. This card consists of analog signal
conditioning hardware and a dual analog-to-digital
converter. This card, shown in Figure 5, was fabricated
at Macquarie University using an in-house 2-layer printed
circuit board (PCB) technology.

Because the input data is synchronous with an external
clock, an asynchronous boundary between the Pamette
and the analog interface was required. This was
implemented in the first user FPGA, using the
XC4010E’s edge-triggered RAM to implement a simple
16-deep asynchronous FIFO [7]. The Pamette provides
support for such asynchronous boundaries by routing a
clock signal from the mezzanine connectors to a pin near
a Xilinx clock buffer.

5. Design Experience

It is commonly believed that the use of reconfigurable
substrates can dramatically reduce the time required to
develop prototype systems (for example, see [10]). Our

experience with the Pamette implementation of the
demodulator supports this. In this section, we describe
our experiences in building the card-based and Pamette
demodulator prototypes, and discuss the reasons for the
differences in design effort required.

During construction of the 40 GHz prototype the US FCC
released its draft proposal for spectrum assignment in the
5 GHz band for the US National Information
Infrastructure [6]. This prompted an additional focus on
5 GHz WLANs with a target speed for the demodulator
prototype of 30 MHz.

The first, card-based, implementation has each of the
blocks shown in Figure 2 implemented as a separate
(PCB). The implementation of this prototype took four
people working full time a year to complete. It should be
noted that this coincided with the introduction of a new
set of PCB CAD tools.

The time it took to design a single working PCB has been
estimated from the log books of the designer:

Learning CAD tools: 9 weeks
Designing circuit: 4
weeks
Fabrication: 2 weeks
Board population: 1 week
Debugging the board: 8 weeks
Total 6 months

This contrasts very strongly with the experience of a first-
time Pamette user. One of the authors, an experienced
hardware engineer, took only a single day to come ‘up to
speed’ with the Pamette hardware and CAD tools. The
C++ examples provided with the CAD were quickly and
easily modified to implement real designs. The most
troublesome concept proved to be the extra layer of
abstraction – writing C++ code which generates
structures which implement the design, rather than
drawing schematics which describe the design directly.
This rapid learning curve was echoed by the rapid
development time – the entire digital section of the
demodulator was completed in 8 person-weeks.

5.1 Conclusions – why the Pamette
implementation was easier.
Our first impression when we finished the Pamette
implementation of the prototype demodulator was the (to
us) astonishing speed at which it was completed. Even
taking into account that doing any design a second time
will inevitably be considerably faster (for example, in the
Pamette demodulator we did not have to design logic – it
was taken from the existing card-based demodulator) the

Figure 5: Analog Interface Card

5

question remained: why was the Pamette implementation
so much faster and easier?

The most obvious answer to this question is – quite
simply – that we didn’t build any hardware. The Pamette
implementation is much closer to the idealized digital
domain than the card-based version – ones are ones,
zeroes are zeroes. There is a much smaller requirement
for the designer to understand the fundamentally analog
nature of the circuit – no ground bounce, ringing, or
crosstalk. Because these problems have been solved by
the designers of the Pamette, the design process is
substantially easier and less error-prone for Pamette
users.

The reconfigurable nature of the Pamette allowed us to
develop the demodulator block by block. Blocks were
implemented and tested in isolation by different
designers. This contrasts strongly with the PCB design
flow, where our inability to simulate complete cards
prevented a block-by-block development path, and
mechanical constraints allowed only limited opportunity
for ‘reconfiguration’ once the cards had been fabricated.
Because the Pamette provides enough reconfigurable
logic to implement the demodulator, we were able to
partition and build the demodulator without putting a lot
of effort into minimizing the area of the blocks. This
advantage remains as long as the target design fits within
the speed and area constraints imposed by the Pamette.

An important advantage of the Pamette over the card-
based demodulator prototype is the tight integration of all
the resources required to develop the demodulator: the
design, implementation and test were all done from a
single workstation. The card-based prototype was
debugged using a logic analyzer interfaced to a
workstation. The interface required custom software,
which itself required debugging. The cards had special
test structures built in, a source of implementation
overhead. In the Pamette implementation, test structures
can be removed once a block has been tested.

The Pamette implementation of the demodulator is
substantially smaller than the card-based version. As one
purpose of the prototype is to take radio channel
measurements in a variety of environments, this
additional degree of portability is an advantage. Further,
the Pamette’s PCI interface means that, unlike the card-
based implementation, custom demodulator/host interface
hardware does not need to be developed.

The Pamette demodulator can be modified rapidly and
over a wide range of parameters- a significant advantage
in a prototype. Experiments may prove that it is

necessary to change arithmetic word widths or to make
more significant modifications such as changing from a
convolutional to a block code. Such modifications to the
card-based prototype would generally require a new PCB
to be designed, manufactured and debugged. Further, the
prototype can be duplicated and disseminated simply by
purchasing a commercially available device rather than
going through the manufacture-populate-test loop again.

6. Acknowledgments
This research was funded in part by the CSIRO Division
of Telecommunications and Industrial Physics.

The WLAN architecture and card-based implementation
are the result of collaborative work between Macquarie
University Electronics and the CSIRO Division of
Telecommunications and Industrial Physics. The authors
thank the other members of the WLAN project: John
Deane and Rob Shaw of CSIRO; John Dalton, Jeff
Graham, and Charles Lee of Macquarie University.

The authors thank John Haddy of Macquarie University
Electronics Technical Services, for his assistance with the
design of the analog mezzanine card, and his informative
discussions on PCB design. Macquarie University
Electronics Technical Services fabricated the card.

7. References
[1] J.E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. V.
Touati, P. Boucard, “Programmable Active Memories:
Reconfigurable Systems Come of Age,” IEEE Trans. On
VLSI, Vol. 4, No. 1, March 1996.
<URL:http://www.research.digital.com/SRC/pamette/>

[2] H. Touati, M. Shand, “PamDC: a C++ Library for the
Simulation and Generation of Xilinx FPGA Designs,”
23 September 1996.
 <URL:http://www.research.digital.com/SRC/pamette/>

[3] D.J. Skellern and T.M.P. Percival, “High Speed
Wireless LANs: Technologies for the Missing Link,”
IEEE 1994 Microwave and Millimetre-Wave Monolithic
Circuits Symposium.
<URL:http://www.mpce.mq.edu.au/elec/networks/
wireless_res.html>

[4] P.J. Ryan, T.M.P. Percival, and D.J. Skellern, “A 16-
Point FFT IC for Wireless Communication Systems,”

6

Workshop on Applications of Radio Science (WARS 95),
25-27 June 1995
<URL:http://www.rp.csiro.au/~pryan/papers/wars>

[5] D.J. Skellern, T.M.P. Percival, C. Lee, P.J. Ryan,
T. McDermott, N.H.E. Weste, J.W. Dalton, J.A. Graham,
T.F. Wong, A.F. Myles, “A mm-wave High Speed
Wireless LAN for Mobile Computing – Architecture and
Prototype Modem/Codec Implementation,” Hot
Interconnects, 1996.

[6] FCC, Notice of Proposed Rule Making, “Amendment
of the Commission’s Rules to Provide for Unlicensed
NII/SUPERNet Operations in the 5 GHz Frequency
Range,” ET Docket Number No. 94-102, RM-8648 and
RM-8653, Document FCC96-193, 25 April 1996.

[7] P. Alfke, “Synchronous and Asynchronous FIFO
Designs,” Xilinx Application Note XAPP 051,
17 September 1996.

[8] Bus Architecture Standards Committee of the IEEE
Computer Society, “Draft Standard for a Common
Mezzanine Card Family: CMC,” P1386/Draft 2.0, 4
April 1995.

[9] Xilinx Corporation, “XC4000 Series Field
Programmable Gate Arrays,” 1996.
<URL:http://www.xilinx.com/ >

[10] S. Hauck, G. Borriello, C. Ebeling, “Springbok: A
Rapid-Prototyping System for Board-Level Designs,”
ACM/SIGDA 2nd International Workshop on Field-
Programmable Gate Arrays, February 1994.

