GETTING STARTED
WITH PROGRAMMABLE
LOGIC DEVICES, THE
16V8 AND 20V8

S es
0000000000000

eeeeee
aaaaaaaaaa

Hands on Design with Programmable Logic Devices

The introduction of programmable logic devices (PLDs) was a greet boon to the field of
digitdl hardware design. The second generation PLD, the GAL (which stands for Generic
Array Logic, atrademark of Lattice Semiconductor) is particularly suited for the small
scade hardware designer. GALs offer the following benefits to the hardware designer:

Hexibility - GALs are very flexible devices, they can implement both combinatorid logic
functions (AND, OR, NAND etc.) and registered logic functions (counters, shift registers
etc.) on the same chip.

PAL replacement- The GAL16V8 and GAL20V 8 each can directly replace over 20 of the
common PAL (Programmable Array Logic - thefirst generation PLD) types each. This
means you only need to stock 2 GAL types to handle your PLD needs.

Space savings - In my experience each GAL hastypicaly replaced between 2 and 4
standard TTL chips, saving alarge amount of board space.

Speed - GALs arefast devices with propagation delay down aslow as7 ns. Typicdl
GALs have a propageation delay of only 15 ns - faster then standard 7400 or 74L S series
logic.

Reprogrammability - Not only are GALSs programmable giving the ability to correct
design errors and make board layout easier, they can be reprogrammed up to 100 times.
Erasing and programming takes only afew seconds.

Cost - In addition to the savingsin PC board red edtate, sandard speed GAL16V8sand
GAL20V8s (25 and 15 ns) cost only afew dollars even in smdl quantities.

There are saverd varieties of GALsbut | will limit this article to the GAL16V8 and
GAL20V8. They are easy to design with and are the least expensive and most readily
available GAL devices. Rather then get bogged down with the internal details of the
devices, well cover what is needed to use these PLDsin your designs and then look at a
red life design example.

The Device Architecture

The GAL16V8is commonly packaged in astandard 20 pin DIP and the GAL20V8 is
commonly packaged in a24 pin skinny DIP (a24 pin skinny DIP is 0.3 inches wide, the
same width asa 20 pin DIP and hdf the width of a standard 24 pin DIP). The pinout for
both devicesis shown in figure 1. For the GAL16V8 pin 10 isthe ground pin and pin 20
the +5 volt pin (VCC). Pins 12 through 19 are each connected to Output Logic Macro
Cels(OLMC). The OLMC alowsthese pinsto act as inputs, combinatorid outputs,
registered outputs and input/output pins. Pins 2 through 9 are dways genera purpose
input pins. If any of the OLMC are configured as registered outputs then pin 1 isa Clock
input and pin 11 is the Output Enable for the registered outputs. If none of the OLMC

are registered then pins 1 and 11 are general purpose inputs. Interna to the chipisan
array of and/or logic that is configured with each OLMC when the chip is programmed.
The 20V8 hasasmilar design, the main difference from the 16V 8 is the four additiona

input pins.
The Desgn Tools

In addition to your PC you will need only three tools to do design work with PLDs, atext
editor, alogic compiler and a device programmer. A logic compiler is a program that
trandates a high level design file, in which the relationship between inputs and outputs is
expressed in the form of equations, to alow levd file device specific file for the
programmer. The low leve file used by the programmer is caled a JEDEC fileand is
sometimesreferred to asa'fuse map’. (Earlier PLDs were programmed by literally
blowing up fusesinternd to the device leaving only the desired connections - of course
they could not be reprogrammed - you threw away your mistakes.) Nationa
Semiconductor used to offer a FREE logic compiler before they got out of the PLD
business. You can Hill get acopy of their PLAN logic compiler off of the Alta
Engineering web site a www.ata-engineering.com. The high level design filefor PLAN
is called an equation file and uses the extension .EQN, the output JEDEC file uses the
extenson .JED. Since PLAN isavailableto everyone | will useit in the examples, the
concepts however are universa, not specific to PLAN. The equation fileis a standard
ASCII text file and can be produced using any text editor.

Designing with Equetions

If you normally design with stlandard TTL devices, shifting to desgn using GALs might
take adight adjusment. However the underlying concepts arethe same. Inthe
equations a + is used to represent OR, a* to represent AND a/ for NOT or inversion. In
figure 2a show the equation represent by an AND gate. Each group of signals ANDed
together isreferred to as a product term. Figure 2b shows the equivalent representation
for atwo input OR gate. In figure 2c amore complicated piece of logic is represented, it
includes the use of the/ symbol to show inverson. Notice how the equation is organized.
The equations are written in asum of products format, a useful conventionisto list each
product term on a separate line. The inversion can also occur on the output as shown is
infigure 2d. Inthe 16V8 and 20V 8 up to eight outputs can be defined in thisway (each
of theeight OLMC). The inputs for the equations can come from any of the input or
output pins elther normd or inverted. A maximum of seven or eight product terms are
alowed for each OLM C, this depends on the exact configuration of the OLMC. Given
this, it is obvious that a sngle GAL can replace saverd packages of AND, NAND, NOR
and OR gates. But thisisonly the gart.

So far dl the examples have used combinatorid logic, in addition GALs can dso handle
sequentia logic such as shift registers and counters. To do thisthe OLMC is configured
asaregiger (D flip flop). If any of OLMC are configured as registered then pin 1 isthe
clock input to the register. Where as an = symbal is used to show a combinatorial output
in an egquation, a:= symbol is used to show aregistered equation output. For example:

Q= D

The := indicates that the output Q isregistered. This meansthat Q will take on the vaue
of D fallowing the riang edge of the clock on pin 1. Two or more outputs can be
combined to form counters and shift registers as shown in figure 3. In this caseit shows
atwo bit counter with atermina count. The two outputs Q0 and Q1 will count from 0 to
3 continuoudly and the termina count indication will be active when the count is a its
maximum vaue of 3.

The registered outputs have a common output engble at pin 11 ona16V8and pin13ona
20V8. When output enableis low the registered outputs are dl enabled. If output enable
goes high al the registered outputs will be disabled (iri-stated). Even when the outputs

are tri-stated the register outputs are gill available interndly as feedbacks (so the counter
would continue to work even if the outputs were disabled). Combinatorid outputs can
each have an output enable defined, thisis limited to asingle product term. For example:

X.OE=B*C
Thiswould indicate that output X should be enabled when B AND C are high.
A Red Desgn Example

To illugtrate the use of GALsinared design, | will use the main board from ahigh

Speed, low cost 16 channd logic andlyzer. Thelogic andyzer main board uses atotal of
17 ICs, of these 2 are static RAMS, 4 are octal latches, 4 are octd buffers and the
remaining 7 are programmed GAL16V8s. All standard logic was handled by the 7 Gals,
they replace about 20 high speed TTL ICs and make the logic andyzer buildable. (For
more information on the logic analyzer desgn download RGBLOGIC.ZIP from the TCJ
BBS, the schematic and dl of the EQN files are included in thefile, so you can review
the complete design.)

Centra to the logic andyzer isthe clock sdection GAL. Thisalowsthe andyzer clock
to be sdlected from 5 different internd clock, an external clock or a software controlled
clock. The PLAN equation file, CLOCK.EQN isshowninfigure4. Thelinesthat start
with a; are comment lines, they are ignored by the compiler and are used for
documentation. The equation file must contain two sections, the declaration section and
the equation section. The declaration section should appear first and isindicated by the
keyword CHIP. Theline:

CHIP clock 16V8
begins the declaration block, it gives the chip a name (clock) and selects the device type

(16V8). The next part of the declaration block is optiona, but will be needed in most
cases. In this section we assign symbolic names to each pin on the chip, asfollows:

clk nc ext salf s2 s1 S0 dir wr gnd /oe sysclk1 wrdat sysclkO g4 g3 g2 g1 g0 vee

The symbolic names start with pin 1 and are assigned in order through pin 20. In this
case pin 1 isassgned the name clk, pin 9 the name wr, pin 12 the name sysclk1 and pin
19 the name 0. If we later need to change the pin assgnments, we smply rearranged
the names given here.

The equation section of thefileisindicated by aline with the word EQUATIONS.
Outputs g0, g1, g2, g3 and g4 form a5 bit counter (astraight forward expansion of the 2
bit counter used before). This counter provides severa reference frequencies at the
outputs, gl ishaf of g0, g2 ishaf of gl etc. With acrystd oscillator of 40 Mhz
connected to pin 1, g0 provides a 20 Mhz clock, g1 a10 Mhz clock, g2 a5 Mhz clock, g3
a2.5Mhz clock and g4 a1.25 Mhz clock. The outputs sysclkO and sysclkl useidentica
equations, so | refer to them together as sysclk. The sysclk outputs are combinatorid,

they alow the system clock to be selected from 0, g1, g2, g3, g4 or the inputs self or ext.
The inputs D0, s1 and 2 select which clock is output to sysclk. From the equations you
can seethat if D0, sl and 2 are dl 0 then sysclk isthe same asthe input sdif. If S0, s1 and
2 aedl 1 then thelast product term will gpply and sysclk will follow g0. Thefind

output defined in the equations is wrddt, thisis obvioudy just asmple two input OR
function. | remember that Bill Kibler said he wanted to see the equivaent circuit in
standard logic for dl programmable logic used in TCJ. It isnot dways possible, but in
thiscase | had firgt looked designing the logic analyzer using sandard logic. The
equivaent aircuit to this GAL is shown in the schemétic in figure 5, notice the savingsin
chip count and cost.

The equation fileis compiled it with the command line:
EQN2JED -N CLOCK

EQNZ2JED isthe PLAN program that produces the JEDEC file, this will take our
CLOCK.EQN file check it for errors and if error free produce the JEDEC file
CLOCK.JED. The-ninthe command line tellsthe program to produce anew log file,
rather then append to the existing log file. Thelog file produced is CLOCK.LOG. The
log file has alot of interesting information about the programmed device the use of each
device pin, the product term usage and the device pinout.

A Memory Decoder

Let'stake alook at ared life example that was suggested to me by Dave Badwin (Editor
of The Computer Journd). Let's say that we are designing a Z80 based system and we
would like the memory map to include an 8K EPROM at address 0000h, a 2K EEPROM
at address 2000h and have the remainder of the 64K address space filled with static ram
(2 32K devices). So atable of our memory map looks like:

Address (hex) Device 0000-1FFF EPROM 2000-27FF
EEPROM 2800-7FFF SRAMO 8000-FFFF SRAM1

Thistype of decoding isapain in the butt if we use sandard TTL devices. We would
need severa devices and have to ded with the problems of propogation delays through
the severd levels of devices. If we use a16V8 or 20V8 we can easily handle this
decoding with one 20 or 24 pin device. Our totd propogeation dday will be the single
propogation delay of the chip. This means we can have a propogation delay aslow as5
nswithaGAL rated a 5 ns. In addition we can include the decoding of the 1/0 space on
the same chip.

In this case defining the equations for each chip select output is very straight forward. We
want the EPROM chip sdlect to be active when address lines A15, A14 and A13 are low
and the Z80 MREQ signd islow. Since the active ate of the EPROM chip sdlect islow

we would express the equation as.

/[EPROM =/A15* /A14* |[A13* IMREQ

The EEPROM chip sdect is only dightly more involved. The address range 2000- 27ff is
sdected when A15, Al14, A12, A1l and MREQ are low, while A13 ishigh. Thisgives
the equation:

/EEPROM =/A15* /A14* A13* /A12* [A11* IMREQ

Thefirg gatic ram has the most complicated equation (but till well within the
capabilities of the 16V 8). The 2800- 7FFF address space can be thought of as three
regions 2800- 2FFF, 3000- 3FFF and 4000- 7FFF. The product terms defining each of
these regions is then ORed together to define the complete equation as follows:

/ISRAMO =/A15* [A14* A13* [A12* A11* IMREQ+ /A15* /A14* A13* A12*
IMREQ + IA15* A14* IMREQ

It is obvious that the equation for the second static RAM's chip sdect is:
/SRAM1=A15* /IMREQ

The complete equation file with the 1/O decoding using a 16V 8 is printed above. If we
wanted finer granularity on the 1/0 decode we could use a 20V 8, thiswould give us 4
addition inputs for address lines, that could be included in the equations. If we wanted to
have a 10 chip select outputs we could use a GAL 22V 10. Note that the pin out selected is
arbitrary, in this case we could swap any of the input pins or any of the output pins just

by redefining the pin list. Thisisagreat ad if you do your own PC board design.

| think this example shows you why | use programmable logic wherever | can. We have
reduced our decode logic to one 20 pin device. In doing so we have reduced the number
of interconnects, saved PC board space, saved money and saved both circuit and PC
board design time. In addition we have increased our design flexibility and helped our
partsinventory. If we later find that we must have a 16K EPROM instead of the 8K

EPROM . we can change our decode circuit by just reprogramming the GAL16V8. We
can aso replace our bin of spare TTL chips with few 16V8s. Once you start using
programmable logic you can see the advantages continue to pile up.

Circuit Layout

When using PLDs you mugt use the same care in circuit layout as you would need to with
any high speed logic device. Completdly covering the topic of high speed circuit design
would fill abook, but here are some thingsto look for. Be careful with the ground and
power layouts to reduce the impedance of these sgnasto the chip. Use adecoupling
capacitor as close as possible to each chip's power and ground pins.

Device programmers

The device programmer will program the device with logic as defined in the JEDEC file.
One example of a device programmer that will program PLDs isthe Alta Pro 2000. For
more information check out the web site a www.ata-engineering.com. | will also post
follow on PLD desgn tutoriad on the web site about using the 22V 10.

; GCLK.EQN Logic Analyzer U15
; This is the declaration section
CHIP GCLK 16V8

; Pin labels here
CLK NC EXT SELF S2 S1 SO DIR WR GND
OEN SC1 WRDAT SCO Q4 Q3 Q2 Q1 QO VCC

; Next is the equation section
EQUATIONS

; QO - Q4 form a 5 bit binary counter

Q0

/Q0

Q1

Q0 * /Q1 +
/Q0 * Q1
Q2 := Q0 * Q1 * /Q2 +
Q2 * /Q0 +

Q2 * /Q1

03

Q0 * Q1 * Q2 * /Q3 +
Q3 * /Q0 +

Q3 * /01 +

Q3 * /Q2

Q4 Qo

Q4

Q1 * Q2 * Q3 * /Q4 +
/Q0 +

Q4 /Q1 +

Q4 /Q2 +

Q4 * /Q3

¥ ox X X

; SCO and SC1 output the system clock as selected by
; SO, S1 and S2

SCO = /SO * /S1 * /S2 * SELF +
SO * /S1 * /S2 * EXT +
SO * S1 * /S2 * Q4 +
/S0 * /S1 * S2 * Q3 +
SO * /S1 * S2 * Q2 +
/S0 * S1 * S2 * Q1 +
SO * S1 * S2 * QO

SC1 = /SO * /S1 * /S2 * SELF +
SO * /S1 * /S2 * EXT +
SO * S1 * /S2 * Q4 +
/S0 * /S1 * S2 * Q3 +
SO * /S1 * S2 * Q2 +
/SO * S1 * S2 * Q1 +
SO * S1 * S2 * QO

; WRDAT is a simple OR function of WR and DIR
WRDAT =WR +
DIR

; Z80 memory and 1/0 decoder example - TCJ
; Memory Map
; 0000-1FFF EPROM
; 2000-27FF EEPROM
; 2800-7FFF SRAMO
; 8000-FFFF SRAM1
CHIP decode 16V8
; set pinout - can be altered later if needed
MREQ A15 Al14 A13 Al12 All IOREQ A7 A6 GND
A5 EPROM EEPROM SRAMO SRAM1 100 101 102 103 VCC
EQUATIONS
/EPROM = /A15 * /A1l4 * /A13 * /MREQ
/EEPROM = /A15 * /Al14 * A13 * /A12 * /A1l * /MREQ
/SRAMO = /A15 * /A14 * A13 * /Al12 * A1l * /MREQ +
/A15 * /A14 * A13 * Al12 * /MREQ +
/A15 * Al14 * /MREQ

/SRAM1 = A15 * /MREQ

/100

/A7 * /A6 * /A5 * /I10REQ
/101 = /A7 * /A6 * A5 * /I0OREQ
/102 = /A7 * A6 * /A5 * /I0OREQ

/103 /A7 * A6 * A5 * /I0OREQ

Robert G. Brown - ALTA ENGINEERING (860) 489-8003

ERIELE]
LndLing

AT

LirdMI

LindMI

0fI

o0/

0/1

0/1

0/1

0/1

/I

0fI

LidHI

S3TOA S+

JUN1I3LTIHIEY sA02717Y

zl ANNOHD

AWy
o/ any

[

¥e

LindMI

ol 1ndMI

LindNT

LndMI

1ndMI

LrdMI

1ndMI

LindMI

1ndMI

LindNT

HM30712

LindMI

PUE SADLTIVY

ERCLE]
LndLing

4T

LindMI

01

of1

0/1

01

01

01

0/1

01

S3TON Gt

L 3dn914

s2A81

oL ANNOHSD

Avedy
HO/aMy

LidMI

LNdNI

LndNI

LirdMI

1ndMI

LrdMI

LNdNI

LidMI

HM20T1D

LrdMI

10

SNOTLYNOD3 019071 IWIAOLYNIGWOD - € FdAn9Ild

{UoTsdsAUuT] JON pUe HO ANy - {2])

af as= o/
+ 4 = ¥/ = ¥ + 8 % ¥/ = ¥

{amdimp moT sAT1ay] anding sul Ue UoTsdasasul (@)

s3eg Mo Fhdur oMl - {dq) s3eg ONY Fndul om] - {¥)

g _
‘o x g« % =X
g
g z
KWQW x&ﬂq
PY BOFL
LN

11

+

Lo o« on/ =1 ol

Lo o+ oo/

Lo/ = of = L0
an/ =1 on
sUaTLERb]

[|
o oo 1
o Lo
(oI v
aL on LB

aaudsnbas BUTLURGT

H21070

AJLN0D — JI0077 393151934 - £ J4noId
o
|mnm4u T
al S Hml I = ol
__Ig) B)
bif L nﬁ =REy vob T
an G
iy
£
L
A4
& Il
LB & Uml =
FibL O
ln 1
1
aa
—42 €
(¥]] g GE& [
S &

12

INFT¥AINDT TI¥a

2l ol o))

NOSTAYAWOD LINJHIS WO

pue 11 - £ JdnoI4

Y302 0L INFIWAINDT 7111

L9

gE

oIa

£ I
TEAFL
Ln

| -

53

J73=

1x3

ATOBAS

[3=1 0=/
Zn

Lz [P
L ==
3]

[51]

(=]
O Qo=
of|~[o

4l
N
+

AT

o+

O Qo= _J
©|m|d1ﬂ|0

13

