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Abstract— Non-coherent detectors for initial code synchro-
nization (acquisition) of BPSK direct sequence spread spec-
trum signals on an AWGN channel are analyzed. In addition
to the thermal noise, in many applications such detectors are
faced with the “self-noise”, due to the partial period corre-
lations. Under the random code sequences assumption, in
this paper an exact analysis of the non-coherent correlator’s
detection performance is carried out by using the theory of
circularly symmetric random variables. The exact analysis
shows that the familiar Gaussian approximation to the dis-
tribution function of the code self-noise is justified for all
cases of practical interest. Furthermore, the overall detec-
tion performance was found to be determined asymptoti-
cally by the sum of the thermal and correlator’s self-noise.
In most cases of practical interest, this asymptotic result
provides a very good approximation to the actual detection
performance of a non-coherent correlator, improving the ap-
proximations devised previously.

I. INTRODUCTION

Acquisition, or initial coarse synchronization, of direct
sequence binary phase shift keying (DS/BPSK) spread spec-
trum waveforms is usually achieved through non-coherent
correlation, as the signal to noise ratio prior to despread-
ing is usually insufficient for the satisfactory performance of
practical carrier phase estimators based on tracking loops.

In addition to the additive white Gaussian noise (AWGN),
during acquisition the non-coherent BPSK correlator is also
confronted with correlator “self-noise”, due to the pseudo
noise (PN) variations of the detected signal in the absence
of any external noise that arises from PN code autocorre-
lation variations. The situation somewhat resembles that
encountered in the multiple access environment, in which
there is a single, nonsynchronized, interferering signal.

The earliest analyses of non-coherent correlation were
based on the assumption that the self-noise could be ne-
glected (see [1], vol. IIT, pp. 31-35, and references therein).
For early spread spectrum systems this approximation was
well justified, as these systems were designed primarily
for antijam or low probability of intercept applications, in
which the thermal noise or jamming noise would typically
be much larger than the correlator self-noise. For mod-
ern commercial applications, however, such as in indoor
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wireless or mobile cellular systems, this assumption is not
necessarily true.

Thus far, within the context of spread spectrum acquisi-
tion, two different approaches to the analysis of the corre-
lator self-noise have been utilized. The first one is based on
the worst case bound on the partial period autocorrelations
for the maximal length PN sequences, derived by Hemmati
and Schilling [2], and later used several times (e.g.[3]). Be-
sides being valid only for the maximal length family of
sequences, this method is in general somewhat pessimistic,
and appears to be particularly pessimistic for correlation
periods significantly shorter than the code period!, which
seem to be the dominant case of interest in present non-
military applications.

The other approach, adopted by Polydoros and Weber
in [4], is to model the self-noise as a Gaussian random pro-
cess. This procedure is based on the intuitively appeal-
ing assumption that the partial period autocorrelations are
distributed binomially (for additional justification, see [1],
vol. I, pp. 289-295), and on the central limit theorem
arguments that are applicable for large integration peri-
ods. After considerable mathematical manipulation, series
representations for the detection and false alarm probabil-
ities were derived, and a simple, although somewhat in-
tuitive, approximation was devised. This approximation
suggests that the overall detection performance can be ap-
proximated by the results obtained with an “equivalent”
noise equal to the sum of the thermal noise and one half of
the correlator self-noise.

From similar analyses of the multiple access interference
effects upon the coherent correlator, however, it is known
that the Gaussian approximation to the binomially dis-
tributed correlations might be somewhat questionable for
small numbers of interfering signals if one is considering
the tails of the distribution, i.e. very low probabilities of
erroneous detection [5]. Unlike the situation in coherent
correlation for data demodulation, where the case of very
low error probabilities is not necessarily interesting if the
spread spectrum system incorporates some kind of error
correcting coding [6], in spread spectrum synchronization
we are quite frequently dealing with comparatively lower
error probabilities, especially for the probability of false
alarm.

IFor instance, for a “typical” correlation period of 100 chips, and as-
suming a sequence length of only 4000 chips, a somewhat simplified ver-
sion of the “worst case” bound as derived in [3] would guarantee a partial
period “off phase” autocorrelation smaller than 97.5, the “in phase” cor-
relation being equal to 100.



One goal of this paper, therefore, is to verify the validity
of the Gaussian approximation to the binomial distribu-
tion of the partial period autocorrelations, and the other is
to obtain more rigorously some handy approximations for
evaluating the performance of the non-coherent correlator.

This paper is organized as follows. In Section II, a brief
introduction to the non-coherent correlation problem is
presented. The characteristics of the binomial distribu-
tion, and the corresponding Gaussian approximation, are
discussed in Section III. In Section IV, it is shown that
the exact analysis of both models can be carried out by
using the theory of circularly symmetric random variables.
Finally, asymptotically tight approximations for the detec-
tion error probabilities are derived in Section V.

ITI. NoN-CoHERENT DS/BPSK CORRELATION

In a DS/BPSK spread spectrum system the received sig-
nal is
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where n(t) is a white Gaussian noise process with power
spectral density No/2, T is the chip (PN code symbol) du-
ration, F,; is the received energy per chip, h(-) is a rectan-
gular pulse of duration 7, K is the phase of the code-chip
sequence, and 7 and © are the unknown chip clock and
carrier phases, respectively. The data sequence, {d;}, and
the PN code sequence, {c¢;}, both assume values from the
set {+1,—1}. L is the number of code-sequence chips per
data symbol.

To initiate successful reception, the receiver must esti-
mate the actual phase of the code chip sequence K, the
code clock phase 7, and the carrier phase ©; the latter
two phases are assumed to be uniformly distributed over
[0,7.] and [0, 27] respectively. Theoretically, the receiver
could perform a joint estimation, or separate estimations
of K, 7 and © in any order. In practice, however, due to
the low pre-despreading signal-to-noise ratio, the receiver
is forced to estimate the code sequence phase (K) followed
by 7 and O, usually through the use of a delay-lock loop
and a Costas loop respectively.

Initial estimation of the code sequence phase, also known
as code acquisition, or initial coarse code synchronization,
is usually performed through serial-search methods. These
are trial-and-error procedures, whereby the correlation of
the incoming signal and an arbitrarily phased locally gen-
erated PN waveform is performed. If the result shows that
these two are not closely correlated, the relative phase of
the local signal is readjusted, and the process is repeated
until the synchronization detector indicates that the cor-
rect code-sequence phase has been found. Typically, this
process would result in an estimation error somewhere be-
tween one-quarter and one-half of the chip period, depend-
ing on the step size. Fine estimation is achieved in the
second stage and is referred to as tracking ([1], pp. 153-
206).
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Fig. 1. Serial-search acquisition scheme.
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Fig. 2. Non-coherent 1&Q correlators: active(top) and passive (bottom).

Since carrier-phase estimation is performed after the code
synchronization, the serial-search correlators in Fig. 1 must
be non-coherent. Two such schemes, based on a quadra-
ture 1&Q detector and base-band processing, are depicted
in Fig. 2. The first is the so called “active” correlator,
where the correlation is performed sequentially on a “chip-
by-chip” basis, and the second is the “passive” correlator
(or matched filter), where the correlation is performed on
M chips in parallel. The latter could be realized with the
aid of charge-coupled-devices (CCD) [11], or programmable
digital FIR filters [12].

We note that analogous schemes exist (yielding the same
performance) where the correlation is performed at the
carrier (or some intermediate) frequency (RF correlation).
“RF passive” correlators are very simple, and “RF”matched
filters can be realized, for example, with the aid of SAW
devices [10]. For an in-depth survey of the technological
and implementation issues, see [13].

The main difference between the two schemes in Fig. 2
reflects the rate of bringing the decisions: in order to cor-
relate M chips, “active” correlators require M7, seconds,
while the “passive” ones can bring such a decision each T,
seconds, thus speeding up the acquisition process by a fac-
tor of M (typical value is M = 100). Apart from that,
their performances are equivalent.

For simplicity, in the following we will neglect the data



sequence {d;}, either because no data is transmitted dur-
ing the initial acquisition period, or because its effects can
be neglected (e.g. data period LT, is much larger than
the integration period MT,, data transition instants are
related to the code sequence {¢;} in such a manner that
the integrations are always performed within the same data
symbol, etc.). However, the effects of the data can be eas-
ily taken into account following the technique presented in

[14].
III. CORRELATOR MODELING

Neglecting the effect of data modulation, after despread-
ing, integration and envelope detection, the decision vari-
able at the output of the non-coherent correlator is the
modulus of the complex r.v. Y defined as

Y = Re/® + N, (2)

where N is a complex, zero-mean Gaussian r.v. with ¢.2.d.
components with variances given by

NoMT;

and R is a real r.v., defined as follows:

R= % [TR,(K—1,D+ 1)+ (T. — 7)R,, (K, D)].
‘ (4)

In (4), R,, (K, D) represents the partial auto-correlation

M

Ry (K, D)= chik ceprtn, (5)
k=1

D being the offset (in number of code chips) between the
locally generated and incoming code sequences. It can be
either positive or negative.

To evaluate R,, (K, D) exactly for any given M, par-
tial period cross-correlations for the specific code sequence
selected in the system must be determined for each pair
(K, D). The most meaningful results would then be ob-
tained by averaging over all K and D. Unfortunately, for
fairly long codes these computations would be prohibitive
because of the time required for processing, and the results
would only apply to the particular code sequence chosen.

Another approach, that is frequently used in similar situ-
ations [5; 6], is to assume the sequence {¢; } to be random?.
The r.v. R,,(K, D) in that case is distributed binomially,
i.e. for D # 0 its probability-density-function (p.d.f.) is

Pr () = 2-”@0( W) lr— -], ©

2Without some “side information” [9], synchronization cannot be ac-
quired if the sequences are really random (implying that the sequence
length tends to infinity). In that case “random sequence” means a repeti-
tive sequence of length N with each ¢;(1 < j € N) chosen randomly from
{+1, -1}, and the “average” performance is then taken over the ensem-
ble. With side information, e.g. with precise time references [9], codes
can be random in a sense as in [5; 6].

and for D =0

P =é6(r—M), (7)

RM(K,O)(T)
where §(-) is the Dirac delta-function. From (4) we see
that, for the random sequence model, the p.d.f. of the
r.v. R in (2) is a convolution of two binomial densities.
In addition, under the random sequence assumption, the
partial period correlations R,, (K, D) do not depend on the
code phase K, but only on the offset D.

We note that the binomial distribution for the partial pe-
riod correlation R, (K, D) in (5) is intuitively expected to
hold not only for true random sequences, but for any long
pseudo-random sequence satisfying Golomb’s three postu-
lates of randomness ([15], see also [1], vol. I, pp. 289-295).
Indeed, precise analyses show that this assertion holds for
most (although not all) members of the most frequently
used classes of PN sequences, such as the maximal-length
or Gold sequences, as long as log, N < M < N [16], N
being the sequence length.

Further simplifications are possible if the integrations are
performed over many chips (M > 1), which is usually the
case in practice. By central-limit-theorem arguments, the
distribution of R, (K, D) in (5) may be approximated by
a Gaussian distribution with mean

M, D=0
mD—{07 D#O ) (8)

0123:{

The random variable R in (4), being a sum of two indepen-
dent Gaussian r.v.’s, is now also Gaussian. From (4) and
(5), the mean of R is non-zero only for D = 0 or D = —1,
i.e. when the two codes overlap at least partially; we de-
note this as hypothesis H1. The alternative case (codes not
aligned) is denoted as hypothesis Hy and corresponds to R
having zero mean.

If we let A denote the fractional normalized timing offset
between codes; i.e.

A:{ Too |
1-Z,

then conditioned on hypothesis H; (i = 0, 1), the mean of

and variance
0, D=0
M, D#0 ()

D#-1

D=-1" (10)

Ris
S VEI(1 - A)M, = 1 ’ (11)
0, 1=0
and the variance of R 1s
2 ET.A%M, i=1
% = { E.T.(1—2A+2A%)M, i=0 (12)

As mentioned earlier, the binomial distribution for the
partial period correlations is expected to be applicable not
only for true random sequences, but for any long PN se-
quence likely to be used in practice. The Gaussian approx-
imation to the binomial distribution, on the other hand, is
expected to hold very well for M > 1, at least as long as



we are not interested in the tails of the distribution. Since
in spread spectrum synchronization we are mostly dealing
with low error-probabilities (say < 1072, especially for the
probability of the false alarm), the validity of the Gaussian
approximation needs to be verified. It appears that this
has not yet been done.

IV. ExacT ANALYSIS

We are interested in obtaining the distribution for the
modulus Y| of the complex r.v. Y given by (2). This
problem has been studied extensively in contexts of multi-
path reception [17], demodulation in the presence of co-
channel interference [18], analog FDMA [19], and a host of
other problems. These previous analyses were based on the
theory of circularly symmetric random vectors. From (2)
it is readily seen that the p.d.f. of the complex r.v. Y has
circular symmetry, so that the results from the theory of
two-dimensional circularly symmetric random vectors can
be applied.

Several methods have been devised for the analysis of the
distribution of |[Y] [17]. The approach that we found to be
the most convenient in the present application is a Laguerre
polynomial method proposed by Esposito and Wilson [20],
and further generalized by Goldman [21]. Goldman derived
the following series representation for the p.d.f. of |Y|

2
Y Y
7)|Y|(y) = EGXP <_F)

N
. ii L kLO i g{|R|2k}
P k! 20% k 20% '

where o3 is the variance of the real and imaginary parts of
N, &{-} denotes expectation, and LZ( -) is the n-th order
Laguerre polynomial with parameter «, ([22], p. 1037)

L3(z) = Xk: < hags ) D7 o,

m!
m=0
The Laguerre polynomial LZ( - ) may be defined recursively

as well ([22], p. 1037)

(13)

(14)
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where L§(z) =0 and L{(2) = 1 + o — z. Equation (15) is
usually more convenient than (14) in numerical computa-
tions. It is interesting to note that, from (13), the p.d.f of
the detected envelope depends only on the even moments
of R.

The probability that the detected envelope exceeds some
threshold v, i.e. the complementary distribution function
lel(v), may now be obtained from (13), or by using an-
other result of Goldman [21]

v? v?
}-|Y|(v) = oxp <_2012\,> {1 B 2012\,
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Fig. 3. Exact probability ]:|Y|(Vn) of exceeding the normalized threshold

V', versus per-chip signal-to-noise ratio for various correlation lengths M |
and the Gaussian approximation; V,, is the normalized threshold; relative
clock-offset A = 0.5.

Equation (16) is a very convenient starting point for check-
ing the validity of the Gaussian approximation to the bino-
mial distribution of the partial period correlations R, (K, D),
since it is quite easy to numerically evaluate the moments
E{R?*} for any distribution.

In Fig. 3, the resulting lel(v) under hypothesis Hg

(i.e. false alarm probability) versus the signal-to-noise ra-
tio E./Np is given for M = 4, 8 and 16, along with the
corresponding results for the Gaussian approximation, for
three different values of the normalized detection threshold
(see Fig. 1)
2
Vo = V—g, (17
N

that would be typical for correlation periods of the order
of 1007,. From Fig. 3 we see that for M as low as 16,
the error is of the order of a fraction of 1 dB, and it can
be shown that exactly the same conclusion holds under
hypothesis H, but the figure is much less illustrative since

changing M also changes the mean, as follows from (8).
Furthermore, from Fig. 3 it can be seen that the de-
tection curves converge for large E./Ny, as should have
been expected since large E./Ny implies that we are mov-
ing away from the tails of the binomial distribution. At
first it may be surprising that the curves converge for low
E./Ny as well, i.e. that the Gaussian approximation holds
exceptionally well even for error probabilities as low® as
10717 (far away in the tails of the binomial distribution).
This effect, however, is also expected, since in that region it
is the thermal noise that determines the performance; the
self-noise term due to R in (2) is negligible in comparison

3We note that in practice typical false alarm probabilities would be in
the range 10=3 to, say, 109,



to the thermal noise term IN.

As M is typically of the order of at least one-hundred
in real applications, we thus conclude that the Gaussian
approximation to the correlator self-noise is justified.

V. (GAUSSIAN APPROXIMATION

In Section IV it was shown that the distribution of |Y]
depends only on the moments of R, whose distribution can
be approximated, in all practical applications, by a Gaus-
sian distribution with mean m;, and variance o7, as given
in (11) and (12) respectively. Among the many possible
methods to express the moments of a Gaussian r.v. R, for

the present purpose the most useful representation appears

to be
ok o2\ " m?
1R }:<_7) Mo | J 22 )"

where H,(z) is the n-th order Hermite polynomial. These
polynomials may also be defined recursively ([22], p. 1033)
as follows:

(18)

Hpy1(2) =22 Ho(2) — 2n Hy—1(2), (19)
where Ho(z) = 1 and H;(z) = 2z. Equation (18) is easily
verified by applying the familiar generating-function iden-
tity ([22], p. 1034)

(20)

to the characteristic function of a Gaussian r.v.. If (18) is
now substituted into (13), the p.d.f. of |Y| becomes

2
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and a similar result can be obtained for the cumulative
distribution function by using (16).

For a fixed argument, the Hermite polynomials in (21)
quickly increase with & and, due to the imaginary argu-
ment, alternate in polarity; the resulting alternating series
may be difficult to evaluate. A numerically more conve-
nient result can be obtained from (21) by expanding L{( )
as in (14). Upon interchanging the order of summations,

and by using the following ([23], vol. II, p. 708)

© {
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With the aid of (18), it may be readily verified that F}, in
(24) is the k-th moment of an auxiliary Gaussian random
variable R,, with mean m, = m; oy /(c? + 0']2\7) and vari-
ance 02 = ¢2/(c? + 0%). It can also be shown that (23),
together with (24), is exactly? the result obtained previ-
ously by Polydoros and Weber [4], without explicitly using
the theory of circularly symmetric random variables.

For the present purpose, however, an even more useful
result can be obtained from (23) by using the following
identity (see Appendix A)

> o (™ =

et Ek 0 2F ( k )(%)kfk(4ab)a b#0 (25)
e2e” Io(2a?), b=20

where I (z) is the modified Bessel function of the first kind
which, for integral order k can be defined as

Ik(z):gm(%)mw.

By substituting (25) (for b # 0) into (23), and by notic-
ing that the non-zero argument of the Hermite polynomial
corresponds to the case m; # 0, i.e. to the hypothesis Hy,
we obtain

77|Y|(y): 01+U i) 22k <2k><UN.mi1)k

(26)

. [ y* +mi ]h( Zymlz). (27)
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In the case m; = 0, i.e. under the hypothesis Hy, with the
aid of (25) (for b = 0), (23) simplifies to

Pry|(v) =

¥
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It should be noted that (28) coincides with the result from
[4], and (27) appears to be new.

As for the complementary distribution function, it is ob-
vious that the last four factors in (27) represent the familiar

(28)

- exp

4In particular, this can be verified if in [4] equation (A.7) is combined
with (A.23), and by noting that in the line following (A.23) the definition
of the parameter m, has a typographical-error and should read as m, =

mion/(1+ P%)



Rician density of order (2k + 2). Since the complementary
distribution of the even-order Rician density can be ex-
pressed in terms of the generalized Marcum’s @-function,

thus for hypothesis H;
Z(_l)k <2]{7) <U%)k
2%k k oy

2 2
o]+ oN
Py =y 75
N k=0
m3 v2
Qk+1 (\/U%‘i‘a?\r 3 \/0_%+0_12V) 3

Q@)= Qe+ Y (Y Ly, 6o

n=1

(29)

where

and Q(z,y) is the familiar Marcum’s @Q-function [24].
A similar series expansion is possible for F |y (v) in the

Hy case, but instead we choose to give bounds. In Ap-
pendix B it is shown that for hypothesis Hy

1

—_ 1
1+02/20% (31)

fo(v) < 7:|Y|(U) < fo(v),
where fo(v) is given by

2 2
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Equations (29), and (31) together with (32), are still too
complex for most practical applications. Further simpli-
fications are possible if we note that in practice both the
mean m; and the (unnormalized) detection threshold Vr
are of the same order of magnitude, and that both have to
be much larger than the total variance o? + 0% in order
to have reliable detection. Now, since the modified Bessel
function I;(z) for large arguments very quickly converges
to the first term of its asymptotic expansion, independently

of the order we have ([22], p. 962)

1
2Tz

and using the well-known asymptotic behavior of Marcum’s
Q-function ([24], pp. 585-589)

- exp

e, (z>1), (33)
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(34)
then, after some simple algebra it can be shown that the
second term on the right hand side of (30) can be neglected
asymptotically, i.e. that

2m(y — )

Employing the result ([23], vol. I, p. 711)
— (=1)F [ 2k _
Z (2213 ( k ) F= (142717 (36)
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Fig. 4. Exact cumulative distribution function ]-'lYl(V) versus the nor-

malized variable V = v/(a? +o?\,) for o?/o?\, = 0.1 (dotted), 0.5 (dashed)
and 10 (dash-dot line); the solid line is the approximation from (37) and

(38) ; the normalized mean of the distribution is u = m?/(a? + U?\]).

from (29) and (35) we arrive at the following asymptotically
tight approximation for TlYl(v) under hypothesis H; (i.e.

for the detection probability)
Vi
’ Uf + 0'12\, '

2

m

Pp ~ 1
b Q(\/U%—FO’?\,

We note that (37) can be used in almost all practical sys-
tems, because in most cases we would have m; and Vp of
the same order of magnitude, and my,Vr > o} + 0%
Under the hypothesis Hg, we recognize from (31) that
fo(v) is an asymptotic expansion for f|Y|(v) . For Vp —

(37)

oo, further simplifications are possible if we substitute (33)
into (32), resulting in the simpler asymptotically tight ex-
pression

Ppy ~ exp <— (38)

V7 )
205 +0%)/
For finite Vp /o, however, accuracy of the approximation
(38) depends also on the ratio o3/c%. This is illustrated
in Fig. 4, where we see that the accuracy decreases with
increasing o3/0%. Nevertheless, in the region of interest
(false alarm probability smaller than, say, 10~2), even for
o2 /o3 = 10, the difference would be less than 1dB. Also,
from the same figure we see that the approximation (37)
holds very well for all system parameters of practical in-
terest, as expected. Thus, if o3 and o% are of the same
order of magnitude, we can freely use the approximations
(37) and (38) for the detection and false alarm probability.

From (3) and (12), which define o2 and %, it is easy
to see that the condition ¢2/0% > 1 corresponds to very
high signal-to-noise ratios (£./Ng), not likely to be encoun-
tered in practice, so that asymptotical expressions (37) and
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(38) should hold quite well under almost all sets of system
parameters.

Furthermore, since Q(0,v) = exp(—v?/2), we see that
(37) and (38) can be combined into the single expression

m? v?2
T|Y|(v) r @ (\/02-2 +o0% \/02-2 + 012\,) '

Equation (39) clearly indicates that, in the non-coherent
correlation of BPSK-DS waveforms, the distribution of the
detected envelope can be very well approximated by the
distribution of the signal embedded in the equivalent noise
that is a sum of the thermal noise ¢% and the correlator
self-noise 0. Depending on the hypothesis H;, (i = 0,1),
the self-noise variance o7 is given in (12).

Finally, in Fig. 5 and Fig. 6 we show the exact detec-
tion performance of the non-coherent correlator that inte-
grates M = 128 chips, along with the approximation (39)
and a somewhat intuitive approximation proposed in [4],
where the equivalent noise process was approximated by
the sum % +07/2. It can be seen that the approximation
(39) holds very well for all detection probabilities, outper-
forming the approximation from [4] especially in the most
interesting range of false alarm probability (10~7 to 1073),
and detection probabilities (larger than 0.9).

The approximation from [4], however, holds amazingly
well, especially for lower normalized thresholds V;,. Due
to the asymptotic nature of (39), for V,, = 30 both ap-
proximations give roughly the same error. Bellow that,
for instance at V,, = 20 (corresponding to the normalized
threshold that could be typical for e.g. M = 64, which also
appears to have been the “state-of-the-art” length of many

(39)
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Fig. 6. Exact miss probability 1 — Pp (solid), approximations from equa-
tion (37) (dashed) and from reference [4] (dotted line) versus per-chip
signal-to-noise ratio for M = 128, A = 0.5, non-coherent correlator; V,,
is the normalized threshold from (17).

passive correlators throughout much of the last decade® ),
the approximation from [4] is more exact for evaluation of
the false alarm probability.

VI. CONCLUSIONS

In this paper, the performance of a spread spectrum
non-coherent correlation detector for BPSK signaling in
an AWGN environment is analyzed. Average performance
over the ensemble of random code sequences is considered,
leading to the binomial distribution of the partial period
autocorrelations.

By using the theory of circularly symmetric random vari-
ables, exact results for the binomial distribution were ob-
tained, as well as for the frequently adopted Gaussian ap-
proximation to the binomial distribution. It has been shown
that the use of the Gaussian approximation is completely
justified in the present application. Under this assump-
tion, exact results for the detection performance of the non-
coherent correlator were derived. In some special cases, it
has been shown that these are identical to the ones ob-
tained previously by Polydoros and Weber [4].

Since the exact results appear to be quite complex, sim-
ple asymptotically tight approximations were obtained, which
are also very tight under most sets of system parameters
likely to appear in practice. These approximations show
that the detection performance of the non-coherent corre-
lator is determined by the equivalent Gaussian noise pro-
cess, whose variance equals the sum of the variances due to
the thermal noise and the correlator self-noise. Compared
to the approximations developed previously [4], the derived
approximate expressions were generally found to perform

SE.g. digital programmable 64-tap model TDC1023 by “TRW” [13].



better.

This paper addressed only the performance of the BPSK
acquisition detector; i.e., the detection and false alarm
probabilities were evaluated as a function of the detection
time and physical parameters of the channel. By using
these results, higher level aspects of the performance of
an acquisition system such as detection/verification logic,
search strategy, quantization of the code phase uncertainty
region, a prior:i probability distribution of the code phase,
etc., can be analyzed following the methods described in [7;
8; 9], either in terms of the distribution of the acquisition
time, or its moments.

APPENDIX A
In order to obtain (25), we introduce the following iden-
tity
1 11 /7
= 9m —/ cos?™ g do,
(m!)? 2m)tw Jy

which can be proved starting from the expression for the
integral foﬁ cos?™ @ df ([23], vol. 1, p. 171).
Thus, the expression on the left hand side of (25) be-

comes
1 ™S (2aj cos 0)"
;/0 HZ:% n!

The summation in (A.2) can be evaluated with the aid

of (20) to yield

(A1)

H, (jb) db. (A.2)

1 T 2 2
_/ 6—4abcos€+4a cos €d6 (A3)
T Jo
Now, if b =0, (A.3) can be written as
1 2a? " —2a” cos o
— € € da, (A.4)
T 0

and since the modified Bessel function of integer order can

be defined also as ([22], p. 958)

2) = (Z/Q)k L 71'62 cos¢>sin2k
I(z) = 5 odo,  (A5)

72-2k (2k)!

from (A.4) and (A.5) equation (25) for b = 0 immediately
follows.

For the case b # 0, by expanding the exponential func-
tion into a power series, (A.3) can be transformed into

l 64112 / —4abcosf
T 0

and further into

(oo}

do,  (A.6)

o0

2)’“/ emabeost sin® 9 df.  (A.T)
0

The integral in (A.7) may now be expressed in terms of
Bessel functions using (A.5) to obtain (25).

It should be added that this derivation was inspired in
part by [25].

APPENDIX B

With the aid of (28), the complementary distribution
function f|Y|('U) under hypothesis Hg can be transformed

into the integral

}'|Y|(v) = c/ e~ Ip(bu) du, (B.1)
where
1 N 1
a =
4o 4(of +0R)
1 1
b = - B.2
403 4(ck+0%) (B-2)
¢ = [4oX(od + U?V)]_lﬁ .

If Iy(2) is expanded into a power-series following (26), we

arrive at
2k —aud
'U2

The integral in (B.3) is, by definition, the incomplete Gamma-
function ([22], pp.317) and can be expressed as ([22], pp.941)

o0

‘7:|Y| v)=2¢ Z
k=0

M' (B.3)

2j

oo 2%
u2k e~ du = e—(w2 Z (Qk)' . v
gy = =

j=0

(B.4)

and if this is substituted into (B.3), it turns into

(B.5)

Now, (B.5) can be lower-bounded if only the term for j =
2k is retained in the second sum, so that

Fly|(v) 2 26_ 25’: ( )2k

=0

(B.6)

The sum on the right hand side of (B.6), following (26), is
the expansion for Io(bv?). Thus

Fry|() > fe aw? 1 (bv?), (B.7)

and if a, b and ¢ from (B.3) are now substituted into (B.7),
the lower bound in (31) follows.

The upper bound in (31) can also be derived from (B.1),
by partial integration. Details are given in ([4], pp. 559).
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