PICPlus™ Application Example #1

9to 12V
vec OR ™ .
b iy PICPlus ~ Microcontroller Board
-
7] [outputgz | [output 1 | o
a .
N © LCD Display
8 ~ [
= 9 BCD Value: 128
R o
0 - 0
Lo - § g §
o e}
g ol [
5 <
o
< -
L no| | T——
4@ Pin Expansion Port sV Analog Input
A3 A2 Al A2 ND| | ——
,—|_|-| E-LAB Digitiol Engineering, Inc.
-]
RS232C Interface
(MAX233)
Digital Inputs
Data Transmit Select:) Wi : .
OPEN: Send Analog Value ¥ 3—Wire Serial Port Connection
CLOSED: Send Digital Value
Alternate Connection to o1 c ;g 13; _l?;(Igllltl\l 23
All Signals Toggle Switch .
:?,z ToGND | GND: PIN 7

This application example illustrates the connection of the PICPIus™ board to a PC via a
RS232, 9600 baud serial connection. A Maxim 233 IC is used to make the physical connection.

The liquid crystal screen simply plugs into the PICPlus™ board - no additional hardware is
necessary. In this example, the screen in used to view the binary-coded data send to the serial port.
The position of the toggle switch determines whether a byte of data from the digital input port or
the data from the on-board analog to digital converter is sent to the serial port.

The attached assembly language program, written in Parallax™ assembly language,
illustrates the use of both the driver routines provided with the PICPlus™ board as well as the use of
routines specific to this application, such as 'to_BCD' and 'xmit'. These particular routines convert
a binary value to its binary-coded decimal equivalent (11111111 binary is sent as ‘2" '5' '5") and
transmit a byte of data as 9600 baud, respectively.

The connections to the PICPlus™ board are being made to the terminal blocks in this
example. All connections could, if desired, be made through the 40 pin expansion port. Using this
method, any additional custom circuitry, such as the MAX233 shown in this example, could be on

one card and simply plug into the PICPlus™ board via a ribbon cable. This approach greatly
simplifies development.

; PROGRAM: out_232.asm

; This program, written in Parallax(TM) assembly language, is for use on

; the PICPlus(TM) Board manufactured by E-LAB Digital Engineering, Inc.

; It samples a toggle switch and sends, depending upon the position of the

; switch, either the BCD value of the digital input port or the BCD value

; of the converted A/D value. The data is send at 9600 baud using RS232C.

; In addition, the transmitted data is also written to the LCD port.

; This allows a visual conformation that valid data is being sent to the PC.

; A terminal program can be used to receive the data, or some simple software
; could be written to sample the PC's serial port.

bit_K = 128 ;9600 baud operation
serial_out = ra.0 ;serial out port A pin O
toggle_in = ra.2 ;data select (toggle switch input)

; Variable storage above special-purpose registers.

org 8
first ds 1 ;first number in BCD string
second ds 1 ;second number in BCD string
third ds 1 ;third number in BCD string
cycle ds 1 ;used in the BCD conversion
delay_cntr ds 1 ;Counter for serial delay routines
bit_cntr ds 1 ;Number of transmitted bits
xmt_byte ds 1 ;The transmitted byte
length ds 1 ;LCD length coulter

device picl6c57,hs_osc,wdt_off,protect_off

include ‘driver.asm’ ;link in driver routine!

mov Ira, #00000100b ;set AO to output, A2 to input

jmp start ;skip ahead to main loop
;lcd text string listed here:
stringl mov w,length ;these 3 lines return string #1

jmp pc+w

retw ‘B,CLDY LVLALLUNE

; this subroutine converts a binary number to its binary-coded
; decimal (BCD) equivalent: (Ex. 11111111 binary -= 2,5,5)

to BCD mov first,#000h
mov second,#000h
mov third,#000h
cjb data,#100,tens_start
sub data,#100
inc first
Iset $
cjb data,#100,tens_start
sub data,#100
inc first

tens_start mov cycle,#009

Iset $

tens cjb data,#010,0nes
sub data,#010
inc second
Iset $
djnz cycle,tens
ones mov third,data
ret

;this subroutine sends 1 byte out AO serially at 9600 baud:

xmit mov bit_cntr,#8 ;eight bits in a byte.
mov xmt_byte,rc ;put character into the transmit byte.
clrb serial_out ;hold line high

bit_delayl mov delay_cntr#bit_K

:loop nop
djnz delay_cntr, :loop

send re xmt_byte ;rotate right moves data bits into

;carry, starting with bit 0.

movb serial_out,c

bit_delay?2 mov delay_cntr#bit_K

:loop nop
djnz delay_cntr, :loop
djnz bit_cntr,send ;Not eight bits yet? Send next data bit
setb serial_out

bit_delay3 mov delay_cntr#bit_K

:loop nop
djnz delay_cntr, :loop

bit_delay4 mov delay_cntr#bit_K

:loop nop
djnz delay_cntr, :loop
ret

;initialize LCD:

start mov rc,#038h ;8-bit, 2-line, 5x7 font
Icall LCD_ctrl ;write to LCD control register
Iset $;set proper page (in larger code)
mov rc, #00Ch ;display on, cursor off, blink off
Icall LCD _ctrl
Iset $
mov rc, #006h ;increment cursor, no shifting
Icall LCD _ctrl
Iset $
mov rc, #001h ;clear display, homes cursor
Icall LCD _ctrl
Iset $

; this loop is the main program:

loop Icall input ;read digital input into ‘data’
Iset $
jnb toggle_in,use_dig ;read toggle switch
Icall azd ;read A/D converter into "data’

Iset $

use_dig

:write text to LCD screen:

printl

Icall
Iset
add
add
add

mov
Icall
Iset

mov
Icall
Iset
mov
Icall
Iset
inc
cjb

mov
Icall
Iset
Icall
Iset

mov
Icall
Iset
Icall
Iset

mov
Icall
Iset
Icall
Iset

mov
Icall
Iset

mov
jmp

to BCD

$

first,#030h
second,#030h
third,#030h

rc, #080h
LCD _ctrl
$

length,#00
stringl

$

rc,w

LCD_print

$

length
length,#11,printl

rc,first
xmit

$
LCD_print
$

rc,second
xmit

$
LCD_print
$

rc,third
xmit

$
LCD_print
$

rc,#00dh
Xmit

$

Ira, #00000100b
loop

:convert value in 'data’ to BCD
;convert to ASCII
;convert to ASCII
;convert to ASCII

:home cursor

;clear length counter
;get next character

:move character from 'w' to 'rc¢’
;print character to LCD port

;add one to 'length’ counter
;"11" is the length of string #1
;send first’ out serially

;print *first’ to LCD port

;send 'second’ out serially

;print 'second’ to LCD port

;send "third’ out serially

;print 'third’ to LCD port

;ASCII for carriage return
;send carriage return to serial port

;set AO to output, A2 to input
;start loop over

