
An Introduction to Linear Recursive Sequences in Spread Spectrum Systems
By: Richard Schwarz

SIGTEK Inc.

Spread Spectrum technology is being applied to many areas of modern communications such as
Cellular Telephones, Global Positioning Satellite (GPS), and Very Small Aperture Satellite
Terminals (VSATS) just to name a few. The core concept behind this technology involves
spreading the data to be transmitted over a much broader spectrum than what is conventionally
done. The spreading is usually achieved by modulating the data with a pseudo random sequence
at a much higher frequency. When you demodulate the composite of the spreading code and
data with a locally generated, identical, time aligned spreading code the power from the
composite bandwidth is collapsed into the data bandwidth. This process yields an effective gain
called processing gain. The measure of processing gain is given as the ratio of the data rate to
the spreading code rate. Multiple spread users can coexist in the same bandwidth if each user is
assigned a different spreading code. Systems utilizing this technique are called Code Division
Multiple Access (CDMA) systems. This article focuses on the properties of Linear Recursive
Sequence spreading codes and their uses in Spread Spectrum Systems.

Linear Recursive Sequence Fundamentals

A Linear Recursive Sequence (LRS) otherwise known as a Pseudo Noise (PN) sequence is
generated from systems which contain three basic elements. These elements are:

 1) Delay Elements
 2) Linear Combining Elements
 3) Feedback Loop Element

The Delay elements are connected in series. Some of the outputs of the Delay elements are
combined in Linear Combining Elements with the outputs of other Delay elements and fed back
to the input of the first Delay element in the series. This definition can sound intimidating to
those of us new to Linear Sequences and Spread Spectrum technology, so let's try to clarify it.

A LRS generator is usually made up of shift registers (the Delay Elements from our definition
above) connected in series. Figure 1 shows just such a configuration.

 Figure 1 Shift Register Configuration

Each register has an input (labeled D) and output (labeled Q) and a clock input (triangle). Each
successive register's input is connected to the previous registers output and all the registers clock
inputs are connected to a single clock source so that when a clock pulse is sent the contents of
each register is shifted into the next register. As you can see in Figure 1 there is a switch on the
input of the first shift register which allows us to set a 1 (high level) or 0 (low level) and a push
button switch which is used as our clock. In this example we switch the 1/0 switch to the desired
setting for the first register and then press the clock button which sends a clock to all registers
and sets the 1 or 0 set on the 1/0 switch into the first register. The process is repeated in our
example four times until all four registers are filled with the desired fill.. Figure 2 displays the
process described above.

 Figure 2 Shift Register behavior during four clock pulses

In our definition of an LRS we talked about three basic elements of which our example above
contains only one, the Delay elements. We will now add the feedback element which consists of
feeding the output of the last register to the input of the first register. Since we have already
placed in the desired initial fill contents of the registers we will disconnect the 1/0 switch
circuitry. What we now have as seen in Figure 3 is a sequence generator which will generate the
initial fill sequence pattern (1100) and will continue to generate this same pattern over and over
for as many pushes on the clock button as are made. In this configuration our sequence repeat
length is considered to be the same as the number of registers we are using (in our example 4).

 Figure 3 Shift Register with Feedback Path

By adding our third element (the Linear Combiner) we can generate a much longer repeat length
using the same number of Delay elements (shift registers). An Exclusive OR (XOR) gate is used
as the Linear Combining element whose two inputs are 1) the feedback of the generator and 2)
the output of one of the other registers. The output of the Exclusive OR gate becomes the input to
the generator. Other TAPS can be added and combined in additional XOR gates if desired but for
our example we will only use one. Figure 4 shows this new configuration of our example with
the same initial fill we used before. Notice that our sequence repeat length is now 15 as opposed
to only 4 from our previous example. As a matter of fact this is the longest sequence that a four
register configuration can generate and is equal to 2n-1 where n = the number of registers used.
This configuration can generate sequences with repeat lengths less than 24-1=15 if configured
with different TAPS off of outputs of different registers. A configuration which generates a
sequence whose repeat length is 2n-1 and whose register fills contained all possible fill values
except the all zero fill after 2n -1 clocks and in a particular order is called a Maximal Length
configuration. We will discuss Maximal sequences in more detail later.

 Figure 4 R4 Maximal Length LRS Generator

In our previous example we used a configuration called Out-of-Line Linear Combination. This is
where the Linear combiner (XOR gate) outputs are in the feedback path. This is the most
common configuration and is often called a SIMPLE-TYPE (S-TYPE) configuration. The
alternate configuration is called In-Line Linear Combination or MODULAR-TYPE (M-TYPE)
generator. In this configuration the Linear combiners (XOR gates) are in the shift register path.
An example of an S-TYPE generator and its equivalent M-TYPE generator are displayed in
Figure 6. Notice that the Exclusive OR gates are represented with addition symbols inside of
circles. This is to represent the fact that Exclusive OR gates are actually Modulo-2 adders. The
truth table for the Modulo-2 Adder is shown below.

1 + 0 = 1 0 + 0 = 0
0 + 1 = 1 1 + 1 = 0

 Figure 5 Modulo-2 Truth Table

 Figure 6 Equivalent In-Line and Out-of-Line R4 LRS Generator Configurations

The LRS Analysis program assumes an S-TYPE (Out-of-Line) configuration. The M-TYPE
(In-Line) configuration has some advantages in hardware implementation and is often used to
implement the hardware while the S-TYPE is more straight forward for calculation and analysis
and is generally more accepted.

Linear Recursive Sequence Generation Parameters

In our examples we will continue to use a four register generator for simplicities sake. It should
be noted however that most applications use more registers to achieve longer sequences.
Different sequences can be generated by modifying various characteristics of an LRS generator.
Three common characteristics which can be modified are the TAP placements, the sequence
LENGTH, and the original register FILL contents.

TAPS

As can be seen from Figure 6 LRS Generators have different positions which the non-feedback
inputs of the Exclusive OR gates are tapped from. These TAP points are very significant and are
the first LRS parameter we will discuss. Let us number our registers from 1 to n where n equals
the number of registers (so 1 to 4 in our example) and have register #1's output be our least
significant TAP position and the output of our nth register be our most significant TAP position.

 Figure 7 TAP Positions

 Further let us represent these positions as a Hexadecimal number. We can then say that we have
2n-1 possible tap (ie.23 = 8) settings since we will always have the Most significant tap which is
our feedback path and our least significant TAP which is 0. Figure 8 shows all the possible TAP
settings for our example four register (R4) generator. As can be seen from both figures 7 and 8
these TAP settings can also be represented as polynomials where each successive tap (starting
from the left) is represented by x raised to its associated TAP position (ie. TAP position 3 = x3 .
The zero TAP not shown in the Hexadecimal representations but is shown as x0 = 1 in the
polynomial representations.

 Figure 8 R4 Tap Settings

There are several aspects of Figure 1.8 that are worth examination. First of all notice that the C h
and 9 h TAP settings are equal to 2n-1 length and are Maximal length codes. Also notice that

except for the Most Significant Tap (the feedback tap) that 9 h (1001) and C h (0011) are mirror
images of each other. That's because for every Maximal length TAP setting there is another
Maximal Tap setting that is it's mirror image. Also notice the 0 repeat length TAP settings and
notice that each of them has an odd number of TAPs. An XOR gate with an odd number of
inputs and the all ones fill would produce a one as the feedback input and never recover from the
ones fill. For the same reason an all zeros fill will always produce a zero feedback input and
never recover from being all zeros. The zero fill problem applies to odd and even number of
TAPs and so is a universal rule. So a rule for our LRS Generator is that all TAP settings should
contain an even number of TAPs. There are several other TAP settings in Figure 8 which have a
repeat length less than 2n-1. Maximal length codes have other properties besides their length
which make them highly desirable which we will examine later.

 LENGTH

The length parameter of an LRS Generator is not as straight forward as one might think. The
lengths mentioned in Figure 8 are the natural lengths of the LRS Generator given its particular
TAP setting. This is the length which the shift register will run before naturally loading it's Initial
Fill. Sometimes LRS generators are truncated before reaching their Maximal Length, or are
allowed to run several Chips (clock cycles) past its natural length (appended) and are then
reloaded with the Initial Fill. Some possible architectures which allow appending or truncating
of the Natural length are described below. In Figure 9 a parallel set of registers hold the initial
fill and automatically loads this fill in when a clock counter reaches the length set in the counter.

Figure 9 LRS Generator with Length Counter

In another possible architecture the sequence is stored in a RAM chip whose starting address is
reset after a predetermined length. Details must be known about the particular LRS generator's
architecture before assuming what the length setting means.

FILL

The FILL parameter is the simplest of the three parameters and describes the initial contents of
all n registers of an Rn (ie. R4) LRS generator (or the register contents at code phase offset 0). In
our example we used a fill of 0011. It is more common to set an impulse (one in least significant

bit of FILL and 0 in all the rest) or an all ones FILL. The all ones FILL is particularly useful as it
is easy to spot in the sequence when observing it on an oscilloscope, printout or screen. The all
zeros FILL is not valid as it will never recover from this FILL due to the use of XOR gates
which use the MODULA-2 addition rule which says that 0 + 0 = 0.

 Maximal Length Codes

As mentioned earlier Maximal Length codes are codes whose natural length runs to 2n-1
elements, where n equals the number of registers used to generate the sequence. Maximal Length
codes have four basic properties which are listed below.

1) Two Level Autocorrelation - The autocorrelation of a maximal length sequence
consists of two levels. Level one which occurs every 2n-1 elements has a correlation of
2n-1. In other words all the patterns match. More will be said about correlation later but
for now it is important to realize that if I had two identical Maximal sequences and I slid

one sequence by the other sequence one pattern at a time I would get a 100% correlation
(match) in the number of chips every time the sequences are exactly time aligned, and
about half the chips will match otherwise. This makes Maximal Sequences easier to
phase lock than non-Maximal sequences which exhibit partial correlation levels when the
sequences being correlated and are not time aligned

2) All possible n-bit numbers-A maximal length code will generate all possible n bit
numbers in the coarse of cycling through its frame length. Inside the frame of a maximal
length code there are:

 1 run of ones of length n.
1 run of zeros of length n-1.
x runs of ones of length n-x.
x runs of zeros of length n-x.

Where n = Length Run and x= 1 to n.

3) Product of identical Maximals with phase offset yields same Maximal with phase
offset- When Modula-2 adding (XORing) a maximal length code with a phase offset
copy of the same maximal length code you get yet another phase offset copy of the same
code as the Product.

4) A Maximal Length code contains one more zero than one in its 2n-1 elements. This
is because an all zero FILL is invalid, and is a FILL which the generator cannot recover
from. An all zero portion of the code could be added to RAM generated code however if
desired.

The usefulness of these Maximal Codes stem from these four properties mentioned above. In
particular the two level Auto-Correlation allows Spread Spectrum receivers to more easily detect
code lock of an incoming signal with an LRS code impressed upon it. A basic block diagram of
a Direct Sequence Spread Spectrum system is provided in Figure 10 .

 Figure 10 Direct Sequence Spread Spectrum System Block Diagram

In this example narrow band information is mixed with a wideband LRS at the transmitter and
then upconverted to an Intermediate Frequency (IF) and then a Radio Frequency (RF) . At the
receiver the RF carrier is down converted and then the IF carrier is stripped off. Then the LRS
must be removed in order to extract the transmitted information. This is not a trivial task. First
the LRS of the incoming signal must be aligned with a locally generated LRS with identical
settings (TAPS, LENGTH, FILL, Clock Rate, etc.). Then the local LRS must be phase aligned
with the incoming signal. Here's where Maximal codes come in handy. The receiver can slide the
local code by the incoming code (usually by dropping clock cycles) and watch the number of bits
in the sequence which match until the two sequences match and a strong correlation (match) peak
occurs, at which point the receiver stops sliding the local LRS and presumably it is time aligned
with the incoming LRS. Then the locally generated code is mixed with the composite incoming
signal which strips off the LRS from the incoming signal to produce the transmitted information.
Non-Maximal codes produce partial correlations which make it more difficult for the receiver to
detect an accurate code phase lock.

Product Codes

A Product Code as discussed in the context of this text is the Exclusive OR-ing (Modulo-2
adding) of two Linear Recursive Sequences to achieve a third sequence which we call the
Product Code. The two codes which make up the Product Code are termed as Factor Codes.
Product Codes can be made up of more than two Factor Codes but for our discussion we will
limit ourselves to two. Figure 11 is a block diagram of a Product generator.

Figure 11 Product Code Diagram

The Natural length of a Product Generator occurs when the Factor Codes sequence's initial fill
frame naturally coincide. For example an R4 code whose natural length is 15 and an R5 code
whose natural length is 31 will run to a length of 15 x 31 = 465. Another example is a code
whose natural length is 15 being XOR-ed with a code whose length is 15 which yields a code
with a length of 15.

Factor Codes can be truncated or appended. For example an R4 can be allowed to run past its
natural length of 15 to 20 for example and be XOR-ed with an R5 which runs to its natural length
of 31. This will produce a Product sequence whose natural length will run to 31 x 20 = 620. If we
then truncate the second sequence length (the R5) by one to 30 our Product only runs to a Natural
length of 60 because the appended R4 code length of 20 and the truncated R5 length of 30 both
have their respective initial fills loaded coincidentally after 60 chips. It must be noted here that
Product Codes do not necessarily yield Maximal sequences. They may contain Maximal
sequences within them which can be used if the Product Code itself is truncated to the length of
the Maximal code portion of the Product Code. Or they may contain a portion of a Maximal
sequence or they may themselves be a Maximal sequence. Rule three from our Maximal

Sequence section tells us that the Product of two identical Maximal Sequences with different
code offsets (different FILLs) gives us the same Maximal sequence at a different code offset.

 Gold Codes

Gold Codes are Product Codes of two different Factor Maximal length sequences with the same
lengths. The two Factor Codes are able to generate a family of many non-Maximal Product
Codes. An important subset of a family of Gold Codes are Preferred Pair Gold Codes. These
are Gold Codes whose cross-correlation spectrum is three valued. These special pairs of Factor
Codes with very predictable cross-correlation properties are necessary in an environment where
one code must be picked from several codes which exist in the spectrum.. One method used to
determine if the code is a Preferred Pair is as follows:

1) Take a length N Maximal Sequence.

2) Create a second sequence by sampling every sth symbol of the first sequence. So now
sequence #2 is a sth decimation of sequence number 1. This second code must also be a
Maximal code of the same length.

3) The length should be odd and the gcd(N,s) = 1. (they must be prime).

The relationship of Product Codes / Gold Codes / and Preferred Pair Gold Codes is shown in
figure 12. For example codes which are mirror images of one another can be used to generate a
Gold Code but cannot be used to generate a Preferred Pair Gold Code.

 Figure 12 Product Code Relational Diagram

The number of three value spectrum cross-correlated Product codes that can be generated with a
pair of Maximals is equal to the number of phase differences which can be set between the two
generators by adjusting the fills of one or both generators. For a Gold code generator using two
R7 Factor generators the number of different combinations equals (27-1) = 127 Non-Maximal
Product code possibilities plus the two original Maximal codes for a total of 129 codes. For a

CDMA system this means 129 different code possibilities 127 of which have a
cross-correlation spectrum which is three valued. Correlation (both Auto and Cross) is covered
next .

Correlation

Correlation of two sequences can be described as the comparison of the two sequences to see
how much they correspond with one another. Various parameters effect the correlation of two
sequences including the code lengths, code phases, and the Chip Rate of each sequence. We will
demonstrate by correlating a simple square wave with itself. The act of correlating a signal
through all phase variations of itself is called autocorrelation. For our square wave we begin by
separating our wave into two waves each identical to one another. One of the wave forms will
remain constant while the second wave form will be slid past the first wave form and a
comparison made at each step to determine the amount of correspondence between the two wave
forms (# of Agreements - # of Disagreements). The output wave form reflects the amount of
correspondence as a rising or declining peak. Figure 13 shows our square wave being correlated
in quarter cycle steps. The correlation wave form is at its greatest peak when the two wave forms
are time aligned, and is at its lowest when the two are 180 degrees out of phase as seen in Figure
14.

 Figure 13 Step Autocorrelated Square Wave

 Figure 14 Step Correlation display of Autocorrelated Square Wave

In the previous example we used a discrete step size of one quarter cycle in the phase sliding of
our correlation. A digital correlator will always have some step size associated with it. An analog
correlator (an integrator) however can correlate over the entire range of phase offsets. The
autocorrelation function is in fact an integration of a function (signal) from one period in time
(phase) to another, and is given by:

 Rf (t) = →∞ ∫
−

∗() (+ τ)

Doing our same example in this format and limiting our operation to only one clock cycle
(- <) we have:τ <

 Rf (t)=

 Figure 15 Square Wave and its Autocorrelation function.

From Figure 15 it can be seen that the Correlation peak is at its maximum (.5 V2) at t = 0. As the
replica wave form is shifted in time the waves no longer correspond in time and the correlation
peak starts to drop until the replica wave is 180 degrees out of phase with the original wave (t =
T/2). At this point our correlation is 0. Because the wave form is repetitive, the wave form starts
to move toward realignment right away and the correlation peak rises. Depending on the step size
of the correlation process the correlation peak can look like anything from a triangle to a line
peak.

∫
−

+τ

= (+ τ)

Cross-correlation

 In cross-correlation the two compared wave forms are different wave forms. This gives us an
idea of how similar the wave forms are to one another at different phases. Correlation (both Auto
and Cross) involving two sequences is done as follows: The first wave form will be held at a
constant phase while second wave form is slid by it in one chip steps. At each phase step a count
is taken of how many chips match (agree) and how many chips do not match (disagree). Then the
number of disagrees is subtracted from the number of Agrees (ie. A-D) to yield the correlation
value for the two sequences at this particular phase offset.

 If we cross-correlate the R4(TAPS = Ch) sequence from chapter one with both itself
(autocorrelation) and then with another R4 (TAPS = 9h) sequence (cross-correlation) we would
see that the autocorrelated R4s have only two values; 15 and -1. Every time the two sequences
are perfectly time aligned they have all fifteen patterns matching exactly. In this case the
Agrees=15 and the Disagrees =0 so A-D = 15. At all other phases the correlation value is 7-8=
-1. In the cross-correlation example we get correlation values ranging from 7 to -5. These
correlation values can be written as power ratios using the following formula:

 Correlation in db = (−)

(+)

The power ratio correlation shown here is incoherent. That is to say that it is irrelevant whether
the sequences are inverted or not. A correlation value of -15 is at the same power level as +15
since the numerator of the equation is in Absolute Value brackets. The LRS Analysis Correlation
Screen is displayed in a logarithmic format with the polarity of the correlation (positive or
negative) shown only in the Starting Phase # Correlation Value display. A logarithmic value
representing the power ratio correlation of the first displayed phase is also shown which is
calculated from the formula shown above and will be the same for two values with equal
magnitudes and different polarities.

Partial Correlations

Partial Correlations are correlation levels which occur between when the Maximum number of
chips which match in a frame, and when the zero correlation baseline level occurs. For Maximal
sequences this zero correlation baseline is the number of chips which should correlate when the
sequences are not time aligned, and is about half +- 1 chips in the sequence frame.

Partial Correlations can occur when Non-Maximal sequences are used for Spreading Codes, or
when other sequences are present in a CDMA (Code Division Multiple Access) environment,
and cross-correlate to some extent with a receivers locally generated sequence. Sometimes, in
order to speed up the correlation process only a portion of the sequence is checked to determine
receiver lock. This does indeed speed up the process but can also allow partial correlations of the
portion of the code which is used. Predictable Partial Correlations can be used to your advantage.

In particular extremely long sequences with partial correlations with predictable levels and
phases can aid in quick code lock times. This technique is used in JPL Ranging codes.

References:

Rodger E.Ziemer, Rodger L. Peterson, Digital Communications and Spread Spectrum Systems,
(New York, Macmillan Publishing Company, 1985) .

Robert C. Dixon, Spread Spectrum Systems, (John Wiley & Sons, Inc, 1984).

W.W. Peterson, E.J. Weldon, Jr. , Error Correcting Codes (Massachusetts Institute of
Technology, 1972).

Ferrel G. Stremler, Communications Systems, (Addison-Wesley Publishing Company, 1990).

Richard Schwarz is a Senior Engineer at SIGTEK Inc. He can be reached at 410-290-3918 or at:

rdschwarz@SIGTEK.COM

VIEW SIGTEK's PRODUCTS @
WWW.SIGTEK.COM/SIGTEK

