
PN-GENERATORS EMBEDDED IN HIGH PERFORMANCE SIGNAL PROCESSORS

Ulrich Walther and Gerhard P. Fettweis

Dresden University of Technology
Mannesmann Mobilfunk Chair for Mobile Communications Systems

Mommsenstr. 13, D-01062 Dresden, Germany

ABSTRACT

Wireless systems based on CDMA such as proposed in the 3GPP
standard utilize pseudo random number sequences for generation
of the spreading codes. These sequences are usually created by the
use of finite field arithmetic. A pure software implementation onto
a digital signal processor (DSP) is very inefficient and would result
in unreasonable high computational load. In this paper a hardware-
based scheme is proposed which allows for an efficient implemen-
tation on a high performance DSP as well as into an ASIC. With
the configurable approach a binary PN-sequence with an arbitrary
primitive polynomial can be generated. The unit was specially de-
signed for and embedded into a domain specific processor, which
supports W-CDMA and alike baseband processing.

1. INTRODUCTION

The wireless communication standard 3GPP represents a Wide-
band CDMA system. At the transmitter the original data is spread
by means of a special sequence, the spreading code. The spreading
operation increases the signal bandwidth and enables user and cell
separation.

At the receiver side the sampled data is fed into a RAKE re-
ceiver to cope with multi-path propagation channels. The RAKE
embodies a set of “fingers” each of them performing a de-spread
operation: the incoming data will be multiplied by the conjugate
code sequence. The fingers need to correlate the data and the code
with different input delays according to the channel impulse re-
sponse. This can be achieved by buffering the input data and
feeding the fingers appropriately. However, a large buffer mem-
ory might result which is rather unfavorable for a DSP-solution.
Another approach eliminates the need for this by starting the code
sequences for each finger with a different delay, i.e. the code phase
for each finger differs.

A software solution in a standard processor would increase the
algorithms complexity by about 100% raising the computational
requirements to an infeasible measure. Therefore, we are looking
for a hardware-based code generation which free the processor for
further computations. However, since this hardware is required for
the spreading operation only the extensions should add as little to
the core size as possible.

In this paper we present an architecture with a minimum ad-
ditional hardware area which is independent from the generating
polynomial over GF(2m), m ≤ 32. Simple control matched to
the instruction set of the processor is accomplished by memory

This work was supported by Deutsche Forschungsgemeinschaft con-
tract SFB 358-A6

mapped configuration registers accessible via standard move in-
structions.

Section 2 explains the generation of PN-sequences and in-
troduces a mathematical formulation in order to derive different
forms of such sequence generators and modifications thereof. The
implementation and embedding of the proposed circuit in a DSP-
data-path is outlined in Section 3. Finally some results and a com-
parison of different realizations will be given.

2. PN-SEQUENCE GENERATION

The 3GPP spreading operation is divided into two parts as in-
dicated in Fig. 1. First the data sequence is multiplied with a
set of orthogonal channelization codescch,i for separating differ-
ent users. The In-phase and Quadrature-phase parts are joined to
form a complex signal, which is then scrambled with a complex
Gold-code [1][2]. A Gold-sequence is derived from two real M-
sequences of length2m−1 which are constructed using a primitive
polynomial of degreem

p(x) = xm + pm−1x
m−1 + · · · + p1x + p0 (1)

with p0 = 1, piε{0, 1}, 0 < i < m. The initial state is determined
by the firstm symbolsy0 . . . ym−1. The subsequent symbols are
given by the recurrence1

yk+m =
m−1X
i=0

pi yk+i (mod2) (2)

A linear feedback shift register (LFSR) of lengthm can be used
to carry out this operation as depicted in Fig. 2 (also proposed
in [1]). However, the straight forward implementation may have
two draw-backs: The series of adder stages in the feedback forms a

1for binary sequences all sums are modulo 2, i.e. addition becomes
XOR, multiplication is performed asAND

P
S

I

Q

channelization

∗j

scrambling

DPCHm

Cscr,n

cch,SF,m

Figure 1: Downlink spreading operation in 3GPP

long critical path and, more serious, the initialization of the register
becomes difficult.

The initial state of the register is determined by two param-
eters: the code number and the delay/offset with respect to other
RAKE fingers. In 3GPP uplink mode the binary representation of
the code number directly determines the initial state and the offset
tells how many times the shift register need to be pulsed before the
first valid symbol is available at the output. In the downlink case
the sum of code number and offset defines how many times the
register need to be pulsed starting with the initial vectors(0). For
large offsets or code numbers it would take a long time to “preset”
the generator. Alternatively one could use a look-up table where
the states of the register are stored for different offset values. Again
for large offsets this solution is not practicable since the memory
size becomes unreasonably large. A much smarter solution would
calculate the initial state within a few cycles - finite field arithmetic
need to be implemented.

One way to produce an offset in the sequence output is the use
of the LFSR with a mask that multiplies the contents of the mem-
ory elements with the masking coefficients and adding the results
up (see Fig. 3). This procedure is proposed in the standard [1] to
create a half-period phase shifted version of the original sequence
for the quadrature parts. However, in order to produce an arbi-
trary offset the masking valueb needs to be re-calculated for each
initialization.

Mathematically the state of the LFSR at timek can be de-
scribed by the vectors(k) = [s

(k)
0 s

(k)
1 s

(k)
2 . . . s

(k)
m−1]

T . After
one clock pulse the state changes into

s(k+1) = M s(k) (3)

with the transition matrix

M =

0
BBBBB@

pm−1 pm−2 . . . p1 1
1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0

1
CCCCCA

(4)

The outputyk equalss(k)
m−1. The shifted output caused by the mask

b(q) = [b
(q)
0 b

(q)
1 . . . b

(q)
m−1]

T results in

yq+k = (b(q))T s(k) (5)

whereq is the offset between the sequences. The special case of
b(0) = [0 0 . . . 0 1]T produces zero offset. In order to determine
the maskb(q) we substitute the recursion (3) and the output yields

yq = s
(q)
m−1 = [0 0 . . . 0 1] Mq s(0) (6)

yk+m−1 yk

s0 s1 s2

s = [s0 s1 s2 . . . sm−1]T

sm−1

out

yk

yk+m

pm−2 pm−3 p0pm−1

= 1

Figure 2: Linear feedback shift register

Settingk=0 in (5) and merging with (6) generates

b(q) = (MT)q b(0) (7)

Hence a circuit for exponentiation of the matrixM is required [3].
A popular solution to that problem is the use of a Galois Field

(GF) multiplier. Consider the transposed form of the LFSR shown
in Fig. 4. That circuit is also known as modular feedback shift
register (MFSR) [4].

The state of the MFSR at time q should be defined withb(q).
Than the subsequent state is given by

b(q+1) = MT b(q) (8)

with M being the same matrix as for the LFSR. The recursion can
easily be transformed into expression (7). Thus the state of the
MFSR is identical to the mask valueb if the initial stateb0 holds
the above mentioned condition. Furthermore the outputs of the
MFSR and the LFSR are equivalent ifs(0) = [1 0 . . . 0]T , hence

b
(q)
0 = s

(q)
m−1. (9)

In terms of Galois Field arithmetics each state of the MFSR rep-
resents an element of the field2. Furthermore every field element
can be expressed as a power of a primitive elementα, i.e. s̃(0) =
α0, s̃(1) = α, . . . , s̃(i) = αi. Each clock cycle the register ad-
vances its state to the next higher power of the primitive element.
Therefore the MFSR is referred to asα-multiplier.

If the MFSR is extended according to Fig. 5, the circuit could
multiply arbitrary numbers of GF(2m) in a serial manner, hence it
is known as GF-multiplier [5]. First the shift register is initialized
with the all-zero state. Each clock cycle the partial product vector
xiy is added to the actual state. Thexi are the subsequent compo-
nents of the x-operand starting with the most significant bit. After
m cycles the product is available.

pm−1 pm−2 pm−3

s0 s1 s2

yk+q

b
(q)
m−1b

(q)
2b

(q)
1b

(q)
0

yk

sm−1

mask

Figure 3: Linear feedback shift register with mask

b0 b1 b2
out

yk
bm−1

pm−1 pm−2 pm−3 p0

Figure 4: Modular feedback shift register

2please refer to [5][6][7] for a detailed description of GF(2m)

The multiplier circuit is used to create an elementαn by form-
ing it from previously calculated and stored valuesαni using the
relation

αn =
L−1Y
i=0

αni with n =
L−1X
i=0

nk, (10)

i.e. the power is generated as a series of multiplications. Example:
Assume the binary representation of the numbern =

PL−1
i=0 ni2

i,
ni ∈ {0, 1}. Now the product calls always for values of the form

α2i

. In this caseL = m holds, which equals the total number
of α-powers to be stored. However, the number of multiplications
increases tom, hence the total number of cycles for the initial-
ization becomesm2. That value can be reduced at the cost of an
increased memory size if the numbern is represented with a higher
order number system (e.g. octal,O = 8) and a group of bits de-
fines the value of a digitni (e.g. 3=ld(O)=ld(8)). The total storage
for anm-bit number becomes mem= dm/ld(O)e × O with O
being the order of the system. Now onlym/ld(O) multiplications
are required. The tradeoff between memory size and intitialization
time should be considered in the final implementation.

Now the overall PN-generator becomes a combination of a
LFSR (Fig. 3) and a GF-multiplier according to Fig. 5 which gen-
erates the mask. After the initialization phase the GF-multiplier is
not used any more. Therefore this implementation seems rather in-
efficient. A simpler yet powerful structure shall be proposed here.

Consider the LFSR and add the partial product circuitry from
the GF-multiplier giving the circuit shown in Fig. 6. Now we
claim the following:
In order to calculates(q+k) from s(k) we reset the shift register,
load the values(k) into the y-operand register and the valueb(q)

(the correspondingα-power from GF(2m) in the x-operand regis-
ter and clock the circuitm times.

Proof: Without loss of generality we setk = 0 and them-
cycle operation yields the state

s(q) = b
(q)
0 Mm−1 s(0) + b

(q)
1 Mm−2 s(0)

+ . . . + b
(q)
m−1 s(0) (11)

Using the LFSR propertys(q)
m−1−i = s

(q+i)
m−1 (3) and the identity

3the subsequentm outputs are already stored in the register

b0 b1 b2

xm−1
xm−2

x0

x- operand (shift) register

y- operand register

y0ym−1 ym−2 ym−3

pm−1 pm−2 pm−3 p0

out

bm−1

mask for LFSR

Figure 5: Serial GF-multiplier

(9) leads to the LFSR state

s̃(q) =

0
BBBB@

b
(q+m−1)
0

b
(q+m−2)
0

...
b
(q)
0

1
CCCCA

=

0
BBB@

[1 0 . . . 0] (MT)m−1 b(q)

[1 0 . . . 0] (MT)m−2 b(q)

...
[1 0 . . . 0] (MT)0 b(q)

1
CCCA

(12)

For both equations (11) and (12) we calculate thei-th element

s
(q)
i =

m−1X
k=0

b
(q)
k Mm−1−k

(i+1),1 (i = 0 . . . m−1) (13)

s̃
(q)
i =

m−1X
k=0

b
(q)
k Mm−1−i

(k+1),1 (i = 0 . . . m−1) (14)

whereM
(m)
ij is elementi, j of the matrixMm. Equivalence of

(13) and (14) is assured if

M
(m−k)
i,1 = M

(m−i)
k,1 (i, k = 1 . . . m) (15)

that is thei-th row of Ml equals thei + 1-st row ofMl+1. This
property is satisfied by the special structure of the matrixM and
could be shown with ease.

Thus the new circuit from Fig. 6 enables the creation of a
sequence with arbitrary phase offset without using an additional
GF-multiplier.

3. IMPLEMENTATION

Based on the considerations above a hardware implementation was
carried out. Since the processor should work for all uplink and
downlink modes the circuit has to be reconfigurable. Hence the
control/configuration unit is accomplished via memory mapped
registers, which are accessible by the normal instruction set of the
processor.

The main blocks of the proposed LFSR-based PN-sequence
generator are the logic for shifter and masks and the 4 configu-
ration registers as shown in Fig. 7. The register based design
allows the construction of sequences with arbitrary polynomials
(m ≤ 32) and phase shifts.

ym−1 ym−2 ym−3 ym−4

s0 s1 s2

pm−1 pm−2 pm−3

y- operand register

x- operand (shift) register (load with

out

sm−1

b = [b0 b1 b2 . . . bm−1]T)

Figure 6: Proposed PN-generator

031

31

31 0

0

data bus

Shift register & Mask logic

xi
out

xq
out

x-operand (shift) register

y-operand register

feedback mask register

phase offset mask register

LSB31

Figure 7: PN-generator blocks

In order to generate a Gold-code two M-sequences are added.
Hence two modified LFSRs and a mapping/decimation circuitry
are needed for the complete generator (see Fig. 8).

Note: A special short scrambling mode is defined for the up-
link. Its is possible to implement the complete set of 3 short-code
generators of GF(28) and GF(22·8) within the described LFSRs
with only minor modifications.

4. RESULTS

The circuit described above as well as a GF-multiplier based ver-
sion have been simulated in VHDL, and synthesized for a 0.25
µm technology. The results are shown in Table 1. The synthesis

Parameter
GF-Mul +
LFSR

modified
LFSR

1. Area [KGates] 3.595 2.726
2. Speed [MHz] 110 125
3. # 16bit regs 20 16

Table 1: Complexity comparison of different implementations

reveals a superiority of the modified LFSR to the combined GF-
multiplier-LFSR in terms of area (≈ 25% savings) and speed.

As initially mentioned, the unit is part of a data-path in a DSP,
which is especially suited to handle algorithms for W-CDMA (in-
cluding Forward Error Control etc.) This processor contains a
highly parallel architecture [8][9] with a scalable number of data-
path units. For 3GPP application, 8 parallel datapath units as de-
picted in Fig. 8, are needed. The outputs of the code-generator
(a combination of the PN-code and the channelization code) is
directly fed into the arithmetic logic unit where the despreading
operation is carried out.

The area of the whole data-path unit will be increased by about
10%. Considering a speed-up by at least a factor of 2 over the
software approach the realization reveals an improvement of the
efficiency by more than 45% implying power savings of the same
magnitude. It should be noted that the registers can be used for
general purposes as well. Thus the actual application specific “over-
head” reduces to the shift registers and mask circuitry.

Accu0 Accu1

ALU (40 bit)

+/-+/-

Flags

RBRA RC RD

Inter connection unit (memory interface)

comp

control

PN-unit

Q

I

LFSR 1 LFSR 2

co
nfi

g

decimate
combine

an
d

+
xo

r

an
d

+
xo

r

re
gi

st
e

rs

Figure 8: Data-path unit with embedded PN-generator

5. CONCLUSIONS

A special PN-generator was designed which can be included into
the datapath of a digital signal processor. The approach was com-
pared to the GF-multiplier based method with respect to area/power
consumption and its embedding properties into the target proces-
sor architecture.
Equipped with such hardware extensions the parallel device is ca-
pable of performing the computations of a CDMA spreading/de-
spreading operation. This is a further step towards the complete
realization of the 3GPP baseband processing algorithms within a
single DSP device.

6. REFERENCES

[1] 3GPP-RAN-TS-25.213, “Spreading and Modulation (FDD),”
Technical Specification, Jun 2000.

[2] E. H. Dinan and B. Jabbari, “Spread Codes for Direct Se-
quence CDMA and Wideband CDMA Cellular Networks,”
IEEE Comm. Mag., vol. 36, no. 09, pp. 48–54, Sep 1998.

[3] D. Burshtein, “An efficient way to produce a delayed version
of a maximum length sequence,”WO Patent 99/35564, 1999.

[4] R. Pickholz, D. Schilling, and L. Milstein, “Theory of
Spread-Spectrum Communications - A Tutorial,”IEEE Trans.
Comm., pp. 855–884, May 1982.

[5] S. Lin and D. J. Costello,Error Control Coding: Fundamen-
tals and Applications, Prentice Hall, 1983.

[6] R. E. Blahut, Theory and Practice of Error Control Codes,
Addison-Wesley, 1984.

[7] M. Simon, J. Omura, R. Scholtz, and B. Levitt,Spread Spec-
trum Communications Handbook, McGraw-Hill, 1994.

[8] U. Walther, F. Tischer, and G. Fettweis, “New DSPs for
Next Generation mobile Communications,” inProc. GLOBE-
COM’99, 1999, vol. V, pp. 2615–2619.

[9] G. Fettweis et al., “Breaking new grounds over 3000 MAC/s,”
in Proc. ICSPAT’98, 1998, vol. II, pp. 543–547.

