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UCLA Low-Power Transceiver Program

Objective: Low-power, handheld, robust transceivers for
indoor and mobile personal communications
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Means: Investigate analog, digital, and antenna
technologies, coupled tightly to system design
Robustness
Up to 160 kb/s o Space Diversity with Multiple Antennas

I e Frequency Diversity with Spread-Spectrum
e Time Diversity with ECC/Interleaving

Low Power Dissipation

e Low-Voltage Custom Analog & Digital CMOS
e Monolithic CMO0S 915 MHz Receive/Transmit Path
e Two-chip Design; Minimum Discrete Components
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Baseband Data Out

The UCLA Frequency-Hopped
Spread-Spectrum CMOS Transceiver
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Performance Specifications of Handset

Power Dissipation of Handset

225 mW in receive, 300 mW in transmit

Frequency Band

902-928 MHz (unlicensed ISM band)

Radiated Power

20 mW (max); 20 pW (min)

Data Rate

2 to 160 kb/s (variable)

Duplexing

Time Division Duplex between TX and RX

Multiple Access Method

Frequency-Hopped Spread-Spectrum CDMA

Coding

Rate-12 Convolutional Code (k=6)

Modulation

Binary or Quaternary FSK

Power Supply

3V (max)

ICTechnology

1-um bulk CMOS

Receive Antennas

Multiple miniature embedded elements with space and polarization diversity




Spread-Spectrum Systems:
Hardware Implications

Direct Sequence Frequency Hopped

Covers wide bandwidth with low

Frequency Diversity by making chip-

rate >> symbol rate . hop-rate

Equalization at chip-rate 0 High- - m Equalization at hop-rate only

speed signal processing required : u Simple binary FSK modulation may
Coherent receiver most common +  be used

Main advantage: SNR gain with = Non-coherent receiver is simple
coherent detection, optimum - = Main advantage: Low-power receiver

modulation <L :
. = Limitation: Sub-optimal channel

Limitation: High complexity capacity



Diversity Techniques

-~ Multiple Antennas

= Antennas receive uncorrelated signals
» Use space and polarization diversity

- Frequency Spreading

m Code-Division Multiple Access (CDMA); Direct Sequence
OR Frequency Hop

= Time-Division Multiple Access (TDMA); Equalization

~ Time Diversity
= Coding

= Interleaving

- Power Control
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Power Conversion Efficiency,%

Power Amplifier

Switched selection FETs
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50 Amplifier attains 42% power conversion efficiency
a0 2 / at +15 dBm output power

30 {315z, Binary-weighted array of FETs gives 36 dB of
power control (6-b word)

20
10 e Inductively-loaded preamp drives FETs above 3-V
. supply
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Frequency-Hopped Synthesizer

Circuits

implemented on
this prototype

Anti-alias
Filter

Direct Digital
Frequency Synthesizer
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Frequency Control Word (11b)
Phase Accumulator (11b)
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Sign Select Control

DDFS produces samples of a sinewave at a frequency selected by 11-b word;
instantly agile frequency source

DDFS output range is 000 13 MHz; adding up-converted outputs produces SSB
91501 928 MHz; subtracting them produces 9021915 MHz

8-b matching required between channels for adequate image suppression



10-b, 80 MHz D-A Converter
Pipeline Delay Data /T(N)

Fipell | & Q DDFS/DAC
- cgeErn T 27 mA at 3V, 80 MHz
3 bits (Word N)
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«—— Charge Redistribution DAC —— +«— Q-to-V Buffer —

* Low-power through differential implementation using

ol I\ M quasi-passive charge-redistribution pipelines
@2 M M * Linearity limited by capacitance mismatch, voltage-
@3 [ [ dependent parasitics

 Glitch free!



Measured DDFS/DAC Spectral Outputs
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* set by capacitor mismatch
* Inter-cell capacitance causes

non-linearity at high frequency



Baseband Tone-Select Filter

Tracking Hopped
Local Oscillator

Low-Order . L.
> é 1 . Fifth-Order Elliptic
RF In An;;;ta‘:lras Lowpass Filter

To Digital
FSK Detector

e

I Downconverted Spectrum
\l ,:"- “‘\‘ __LPF Response

T | el N

_13 MHz ] +13 MHz -13 MHz +13 MHz
. 5th-order Elliptic LPF with 200-kHz cutoff ’

implemented as SCF; dissipates 15 mW from 3- f \

V at 5 MHz sample rate. Operates up to 20 MHz. 3 N\

60 dB stopband attenuation. k- i A
. LPF sets noise bandwidth of entire system
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Lowpass Channel-Select Filter

Downconverted Spectrum
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= 70 nV/Hz in passband
= 4.6 mA from 3V

= 200 pF total on-chip
capacitance



Digital Tone Detector

Max | MSB
Select

9b
MUX ——

1-bit oversampled correlator (programmable oversample rate)
- Multipliers are switches, integrators are accumulators
1.9 sq mm active area implementation will dissipate 2 mW



Rationale Underlying UCLA
Low-Power Transceiver

« Radio paging receiver is the most evolved low-energy wireless device
today. Receives 500 to 1000 b/s at 400 MHz to 900 MHz.

* Long battery life obtained through very high level of integration (two
chips) and optimized system design

« UCLA transceiver uses this as a model. Key extensions are:
[0 Two-way communication
(0 Much higher data rate 0160 kb/s (programmable)
[0 Robust operation in multipath environment O Diversity
00 Large multi-user capacity 0 CDMA spread-spectrum

Features ¢+ Binary FSK modulation of carrier (like pager)
Frequency-hopped spread-spectrum
Simple demodulation after de-hopping (like pager)

Two-chip transceiver (like paging receiver)




New Technology for Etching Inductors

Need fast etchant in p+ doped substrates Xenon DiFluoride (XeF,) gas-

Should minimally etch exposed metallization phase etchant

* Etches hemispherical pits
anisotropically through array of small
holes in oxide

 Depth of etching may be visually
monitored through semi-transparent
nitride




1 GHz Continuous-Time LNA and Mixer

A demonstration of the fundamental capability of MOSFETs to attain
low noise and wide dynamic range, at low power

1-um CMOS operating at 3V; matched to 50 at input

Drain 8 mA from 3V




LNA Design Rationale

2
(0,C)" R, x 52

Measured fT vs V -V,

I
50 nH on-chip inductor load

u Rs = 50()
23 dB gain requires bias at (V_-V,)=0.6V
for sufficiently high f.
LNA + mixer drain 8 mA from 3 V

0.1 0.2 0.3 0.4 0.5
Ves Ve V



Channel-Select Filter
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Channel Filter

6th-Order Elliptic

230 kHz
K

24dB m

320 kHz

50 dB

Current drain of active filter ~ 3.5 mA
Input-referred noise ~ 40 nV//Hz

Capacitor spread = 108
Input capacitor ~ 0.45 pF

Output compression point ~ 2 V ptp
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Increasing DDFS/ DAC Clock Frequency
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Eliminate two clock phases, ¢4 and ¢5, in buffer driving
on-chip capacitive load

Rescale DDFS. Carry-select adder in accumulator. AC somm JF
Use open-loop buffer to drive polyphase filter through
four-FET switch upconversion mixers m

3rd-order distortion, including buffer < —45 dB



Polyphase Filter for Sideband Selection

 Extension of the RC-CR phase-shift network,
with four-phase inputs and outputs

« Reinforces one sequence of quadrature phases

Q ..270 (clockwise, say), while attenuating the other
o ~9¢ @ ° Robust against component mismatches (order-
T of-magnitude better than single-phase network)
600 O « Similarly selects one sideband after
03pF 1 upconversion (60 dB rejection with 10° phase

error in LO)
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Transmitter Test Chip

6x3.8 mm active area
65 mA active current
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Pawer Amp Output, dBm

Transmitter Output Spectra
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Current Drain in Transceiver Parts
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Measured Performance of Front-End
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